Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Sure, here is a `merge()` function that does what you asked for:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = '' for start_seconds, end_seconds, text in transcript_segments: if text.endswith('.'): sentence += text.strip() sentences.append(sentence) sentence = '' else: sentence += text.strip() + ' ' return sentences |
1 2 | if sentence: sentences.append(sentence.strip()) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = '' for start_seconds, end_seconds, text in transcript_segments: if text.endswith('.'): sentence += text.strip() sentences.append(sentence) sentence = '' else: sentence += text.strip() + ' ' if sentence: sentences.append(sentence.strip()) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = '' for start_seconds, end_seconds, text in transcript_segments: if text.endswith('.'): sentence += text.strip() sentences.append(sentence) sentence = '' else: sentence += text.strip() + ' ' if sentence: sentences.append(sentence.strip()) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 38, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got ['the robust ness of neural networks .', 'And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Sure, I can help you write a `merge()` function that uses the `parse_transcript()` function to parse the data and then merges the words into sentences that end with a period. Here's a possible implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): sentence.append(text.strip('.')) sentences.append(' '.join(sentence)) sentence = [] else: sentence.append(text) return sentences |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): sentence.append(text.strip('.')) sentences.append(' '.join(sentence)) sentence = [] else: sentence.append(text) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): sentence.append(text.strip('.')) sentences.append(' '.join(sentence)) sentence = [] else: sentence.append(text) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 38, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [' the robust ness of neural networks '] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Sure, I can help you write a `merge()` function that uses the `parse_transcript()` function to parse the data and then merges the words into sentences that end with a period. Here's a possible implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | from datetime import timedelta import re def merge(content): # First, parse the transcript using the provided function transcript_segments = parse_transcript(content) # Initialize an empty list to store the merged sentences sentences = [] # Initialize an empty string to accumulate words into a sentence sentence = '' # Iterate over the parsed transcript segments for _, _, text in transcript_segments: # If the text ends with a period, append it to the sentence and add the sentence to the list if text.endswith('.'): sentence += text sentences.append(sentence) # Reset the sentence string sentence = '' # If the text does not end with a period, append it to the sentence with a space else: sentence += text + ' ' # Return the list of sentences return sentences |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | from datetime import timedelta import re def merge(content): # First, parse the transcript using the provided function transcript_segments = parse_transcript(content) # Initialize an empty list to store the merged sentences sentences = [] # Initialize an empty string to accumulate words into a sentence sentence = '' # Iterate over the parsed transcript segments for _, _, text in transcript_segments: # If the text ends with a period, append it to the sentence and add the sentence to the list if text.endswith('.'): sentence += text sentences.append(sentence) # Reset the sentence string sentence = '' # If the text does not end with a period, append it to the sentence with a space else: sentence += text + ' ' # Return the list of sentences return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | from datetime import timedelta import re def merge(content): # First, parse the transcript using the provided function transcript_segments = parse_transcript(content) # Initialize an empty list to store the merged sentences sentences = [] # Initialize an empty string to accumulate words into a sentence sentence = '' # Iterate over the parsed transcript segments for _, _, text in transcript_segments: # If the text ends with a period, append it to the sentence and add the sentence to the list if text.endswith('.'): sentence += text sentences.append(sentence) # Reset the sentence string sentence = '' # If the text does not end with a period, append it to the sentence with a space else: sentence += text + ' ' # Return the list of sentences return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 48, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [' the robust ness of neural networks .'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Sure, I can help you write a `merge()` function that uses the `parse_transcript()` function to parse the data and then merges the words into sentences that end with a period. Here's a possible implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): current_sentence.append(text.strip('.')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): current_sentence.append(text.strip('.')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | from datetime import timedelta import re def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start, end, text in transcript_segments: if text.endswith('.'): current_sentence.append(text.strip('.')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 38, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [' the robust ness of neural networks .'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Sure, I can help you with that. Here's a `merge()` function that should do what you're asking for:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | from datetime import timedelta import re def parse_transcript(content): # This is your original parse function transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: text = text.strip() if text.endswith('.'): current_sentence.append(text.replace('.', '')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | from datetime import timedelta import re def parse_transcript(content): # This is your original parse function transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: text = text.strip() if text.endswith('.'): current_sentence.append(text.replace('.', '')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | from datetime import timedelta import re def parse_transcript(content): # This is your original parse function transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: text = text.strip() if text.endswith('.'): current_sentence.append(text.replace('.', '')) sentences.append(' '.join(current_sentence) + '.') current_sentence = [] else: current_sentence.append(text) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 52, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got ['the robust ness of neural networks .'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False