Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Certainly! To create a `merge()` function that calls `parse_transcript()` and merges the transcript segments into sentences ending with a period (`.`), we can follow these steps: 1. Parse the input content to get the list of transcript segments. 2. Iterate through the segments and concatenate the text until a period (`.`) is encountered. 3. Collect these concatenated sentences into a list and return the list. Here's how you can achieve this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) merged_sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text) if text.strip().endswith('.'): merged_sentences.append(' '.join(current_sentence).strip()) current_sentence = [] # To handle any leftover words that might not end with a period if current_sentence: merged_sentences.append(' '.join(current_sentence).strip()) return merged_sentences # Example content content = """[00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint""" # Use the merge function sentences = merge(content) for sentence in sentences: print(sentence) |
1 2 | the robust ness of neural networks . And this is joint |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) merged_sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text) if text.strip().endswith('.'): merged_sentences.append(' '.join(current_sentence).strip()) current_sentence = [] # To handle any leftover words that might not end with a period if current_sentence: merged_sentences.append(' '.join(current_sentence).strip()) return merged_sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) merged_sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text) if text.strip().endswith('.'): merged_sentences.append(' '.join(current_sentence).strip()) current_sentence = [] # To handle any leftover words that might not end with a period if current_sentence: merged_sentences.append(' '.join(current_sentence).strip()) return merged_sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 52, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got ['the robust ness of neural networks .', 'And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
To achieve the merging of words into sentences that end with a period, we can create a `merge()` function that first calls the `parse_transcript()` function to get the list of transcript segments. Then, we can iterate over these segments, accumulating words until we encounter a period, which indicates the end of a sentence. Here's how you can implement the `merge()` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, word in transcript_segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # Handle any remaining words that do not form a complete sentence (optional) if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage: content = ''' [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint ''' print(merge(content)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, word in transcript_segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # Handle any remaining words that do not form a complete sentence (optional) if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage: content = ''' [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint ''' print(merge(content)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, word in transcript_segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # Handle any remaining words that do not form a complete sentence (optional) if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage: content = ''' [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint ''' print(merge(content)) def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[' the robust ness of neural networks .', ' And this is joint']
Traceback (most recent call last):
File "/usr/src/app/main.py", line 69, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got [' the robust ness of neural networks .', ' And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
To achieve the merging of words into sentences that end with a period, you can create a `merge` function that first calls the `parse_transcript` function to get the list of segments. Then, it will iterate through these segments, accumulating words into sentences until it encounters a period (`.`), at which point it will finalize the current sentence and start a new one. Here's the complete implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there's any leftover words that don't end in a period, join them into a final sentence if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage content = """ [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint """ sentences = merge(content) print(sentences) |
1 | ['the robust ness of neural networks .', 'And this is joint'] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there's any leftover words that don't end in a period, join them into a final sentence if current_sentence: sentences.append(' '.join(current_sentence)) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, text in segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there's any leftover words that don't end in a period, join them into a final sentence if current_sentence: sentences.append(' '.join(current_sentence)) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 52, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got ['the robust ness of neural networks .', 'And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
To implement the `merge` function that calls `parse_transcript` and merges words into sentences that end with a period, we can follow these steps: 1. Parse the content to get the list of transcript segments. 2. Iterate through the transcript segments and merge words until we find a period. 3. Collect the merged sentences into a list and return it. Here’s how you can do it:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there are any remaining words that didn't end with a period if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage content = """ [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint """ merged_sentences = merge(content) for sentence in merged_sentences: print(sentence) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there are any remaining words that didn't end with a period if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage content = """ [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint """ merged_sentences = merge(content) for sentence in merged_sentences: print(sentence) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): transcript_segments = parse_transcript(content) sentences = [] current_sentence = [] for start_seconds, end_seconds, text in transcript_segments: current_sentence.append(text.strip()) if text.strip().endswith('.'): sentences.append(' '.join(current_sentence)) current_sentence = [] # In case there are any remaining words that didn't end with a period if current_sentence: sentences.append(' '.join(current_sentence)) return sentences # Example usage content = """ [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint """ merged_sentences = merge(content) for sentence in merged_sentences: print(sentence) def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
the robust ness of neural networks .
And this is joint
Traceback (most recent call last):
File "/usr/src/app/main.py", line 71, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got ['the robust ness of neural networks .', 'And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
Certainly! To achieve this, you'll want to create a `merge` function that: 1. Uses the `parse_transcript` function to get the parsed segments. 2. Iterates through these segments, merging words until it encounters a period (`.`). 3. Collects the merged sentences into a list and returns them. Here's a sample implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, word in segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence).strip()) current_sentence = [] if current_sentence: # If there are remaining words after the loop sentences.append(' '.join(current_sentence).strip()) return sentences # Example usage content = """ [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint """ merged_sentences = merge(content) for sentence in merged_sentences: print(sentence) |
1 2 | the robust ness of neural networks . And this is joint |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, word in segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence).strip()) current_sentence = [] if current_sentence: # If there are remaining words after the loop sentences.append(' '.join(current_sentence).strip()) return sentences |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import re from datetime import timedelta def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments def merge(content): segments = parse_transcript(content) sentences = [] current_sentence = [] for _, _, word in segments: current_sentence.append(word) if word.endswith('.'): sentences.append(' '.join(current_sentence).strip()) current_sentence = [] if current_sentence: # If there are remaining words after the loop sentences.append(' '.join(current_sentence).strip()) return sentences def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") expected = [' the robustness of neural networks.', ' And this is joint'] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 51, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got ['the robust ness of neural networks .', 'And this is joint'] instead of [' the robustness of neural networks.', ' And this is joint']
Testing if the previous output contains the string All tests passed
: False