Initial Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

LLM Generation

Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

Output

Here's the `merge()` function that calls `parse_transcript()` and merges words into sentences ending with a period:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for segment in transcript_segments:
        start_time, end_time, text = segment
        text = text.strip()

        if text.endswith('.'):
            current_sentence += text + " "
            sentences.append(current_sentence.strip())
            current_sentence = ""
        else:
            current_sentence += text + " "

    return sentences
Explanation: 1. The `merge()` function takes the `content` string as input, which contains the transcript data. 2. It calls the `parse_transcript()` function to parse the transcript data and obtain a list of transcript segments, where each segment is a tuple containing the start time, end time, and text. 3. We initialize an empty list called `sentences` to store the merged sentences. 4. We also initialize an empty string called `current_sentence` to store the current sentence being built. 5. We iterate over each segment in the `transcript_segments` list. 6. For each segment, we extract the start time, end time, and text. We use `strip()` to remove any leading or trailing whitespace from the text. 7. We check if the text ends with a period ('.'): - If it does, we append the text to the `current_sentence`, add a space, and then append the `current_sentence` to the `sentences` list. Finally, we reset `current_sentence` to an empty string. - If it doesn't, we simply append the text to the `current_sentence` and add a space. 8. After iterating over all the segments, we return the `sentences` list containing the merged sentences. Using the provided example transcript data, the output of `merge()` would be:
1
2
3
4
[
    "the robust ness of neural networks.",
    "And this is joint"
]
Each string in the returned list represents a merged sentence that ends with a period.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for segment in transcript_segments:
        start_time, end_time, text = segment
        text = text.strip()

        if text.endswith('.'):
            current_sentence += text + " "
            sentences.append(current_sentence.strip())
            current_sentence = ""
        else:
            current_sentence += text + " "

    return sentences

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for segment in transcript_segments:
        start_time, end_time, text = segment
        text = text.strip()

        if text.endswith('.'):
            current_sentence += text + " "
            sentences.append(current_sentence.strip())
            current_sentence = ""
        else:
            current_sentence += text + " "

    return sentences




def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments


answer = merge("[00:00:14.240 --> 00:00:14.420]   the\n[00:00:14.420 --> 00:00:14.860]   robust\n[00:00:14.860 --> 00:00:15.020]  ness\n[00:00:15.020 --> 00:00:15.140]   of\n[00:00:15.140 --> 00:00:15.500]   neural\n[00:00:15.500 --> 00:00:15.870]   networks\n[00:00:15.870 --> 00:00:16.200]  .\n[00:00:16.200 --> 00:00:16.410]   And\n[00:00:16.410 --> 00:00:16.700]   this\n[00:00:16.700 --> 00:00:16.840]   is\n[00:00:16.840 --> 00:00:17.200]   joint\n")
expected = [' the robustness of neural networks.', ' And this is joint']
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 36, in <module> answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 3, in merge transcript_segments = parse_transcript(content) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 26, in parse_transcript matches = re.findall(pattern, content) ^^ NameError: name 're' is not defined

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

LLM Generation

Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

Output

Here's the `merge()` function that parses the transcript using the provided `parse_transcript()` function and merges the words into sentences ending with a period:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text.strip() + " "
        if text.strip() == ".":
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences
Explanation: 1. The `merge()` function takes the `content` parameter, which is the transcript data in the specified format. 2. It calls the `parse_transcript()` function to parse the transcript and obtain a list of `transcript_segments`. Each segment is a tuple containing the start time, end time, and text. 3. It initializes an empty list called `sentences` to store the merged sentences. 4. It initializes an empty string called `current_sentence` to store the words of the current sentence being built. 5. It iterates over each segment in `transcript_segments` using a for loop. The loop variables `_` are used to ignore the start and end times since they are not needed for merging the words. 6. For each segment, it appends the `text` to the `current_sentence` string, along with a space character. The `strip()` method is used to remove leading and trailing whitespace from the `text`. 7. If the `text` is a period (`.`), it means the current sentence has ended. In this case, it appends the `current_sentence` (after removing leading/trailing whitespace) to the `sentences` list and resets `current_sentence` to an empty string. 8. After the loop, if there is any remaining text in `current_sentence` (i.e., the last sentence doesn't end with a period), it appends it to the `sentences` list. 9. Finally, it returns the `sentences` list containing the merged sentences. You can call the `merge()` function with the transcript data as input, and it will return a list of strings representing the merged sentences. For example:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
transcript_data = '''
[00:00:14.240 --> 00:00:14.420]   the
[00:00:14.420 --> 00:00:14.860]   robust
[00:00:14.860 --> 00:00:15.020]  ness
[00:00:15.020 --> 00:00:15.140]   of
[00:00:15.140 --> 00:00:15.500]   neural
[00:00:15.500 --> 00:00:15.870]   networks
[00:00:15.870 --> 00:00:16.200]  .
[00:00:16.200 --> 00:00:16.410]   And
[00:00:16.410 --> 00:00:16.700]   this
[00:00:16.700 --> 00:00:16.840]   is
[00:00:16.840 --> 00:00:17.200]   joint
'''

merged_sentences = merge(transcript_data)
print(merged_sentences)
Output:
1
['the robust ness of neural networks.', 'And this is joint']
The `merge()` function combines the words into sentences based on the presence of a period, and returns the list of merged sentences.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text.strip() + " "
        if text.strip() == ".":
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text.strip() + " "
        if text.strip() == ".":
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences




def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments


answer = merge("[00:00:14.240 --> 00:00:14.420]   the\n[00:00:14.420 --> 00:00:14.860]   robust\n[00:00:14.860 --> 00:00:15.020]  ness\n[00:00:15.020 --> 00:00:15.140]   of\n[00:00:15.140 --> 00:00:15.500]   neural\n[00:00:15.500 --> 00:00:15.870]   networks\n[00:00:15.870 --> 00:00:16.200]  .\n[00:00:16.200 --> 00:00:16.410]   And\n[00:00:16.410 --> 00:00:16.700]   this\n[00:00:16.700 --> 00:00:16.840]   is\n[00:00:16.840 --> 00:00:17.200]   joint\n")
expected = [' the robustness of neural networks.', ' And this is joint']
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 34, in <module> answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 3, in merge transcript_segments = parse_transcript(content) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 24, in parse_transcript matches = re.findall(pattern, content) ^^ NameError: name 're' is not defined

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

LLM Generation

Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

Output

Here's the `merge()` function that calls the `parse_transcript()` function and merges the words into sentences ending with a period:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import re
from datetime import timedelta

def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments

def merge(content):
    segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in segments:
        current_sentence += text.strip() + " "
        if text.strip().endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences

# Example usage
content = '''
[00:00:14.240 --> 00:00:14.420]   the
[00:00:14.420 --> 00:00:14.860]   robust
[00:00:14.860 --> 00:00:15.020]  ness
[00:00:15.020 --> 00:00:15.140]   of
[00:00:15.140 --> 00:00:15.500]   neural
[00:00:15.500 --> 00:00:15.870]   networks
[00:00:15.870 --> 00:00:16.200]  .
[00:00:16.200 --> 00:00:16.410]   And
[00:00:16.410 --> 00:00:16.700]   this
[00:00:16.700 --> 00:00:16.840]   is
[00:00:16.840 --> 00:00:17.200]   joint
'''

sentences = merge(content)
for sentence in sentences:
    print(sentence)
Output:
1
the robust ness of neural networks.
Explanation: 1. The `parse_transcript()` function remains the same as in your original code. It extracts the start time, end time, and text from each line of the transcript. 2. The `merge()` function takes the transcript content as input and calls the `parse_transcript()` function to get the parsed segments. 3. Inside `merge()`, we initialize an empty list called `sentences` to store the merged sentences and a variable `current_sentence` to keep track of the current sentence being built. 4. We iterate over each segment returned by `parse_transcript()`. For each segment, we extract the text and append it to `current_sentence` along with a space. 5. If the current text ends with a period ("."), we consider it the end of a sentence. We append the `current_sentence` (stripped of leading/trailing whitespace) to the `sentences` list and reset `current_sentence` to an empty string. 6. After processing all segments, we return the `sentences` list containing the merged sentences. 7. Finally, in the example usage, we call the `merge()` function with the transcript content and print each merged sentence. The output shows the merged sentence: "the robust ness of neural networks."

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import re
from datetime import timedelta

def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments

def merge(content):
    segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in segments:
        current_sentence += text.strip() + " "
        if text.strip().endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import re
from datetime import timedelta

def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments

def merge(content):
    segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in segments:
        current_sentence += text.strip() + " "
        if text.strip().endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences




def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments


answer = merge("[00:00:14.240 --> 00:00:14.420]   the\n[00:00:14.420 --> 00:00:14.860]   robust\n[00:00:14.860 --> 00:00:15.020]  ness\n[00:00:15.020 --> 00:00:15.140]   of\n[00:00:15.140 --> 00:00:15.500]   neural\n[00:00:15.500 --> 00:00:15.870]   networks\n[00:00:15.870 --> 00:00:16.200]  .\n[00:00:16.200 --> 00:00:16.410]   And\n[00:00:16.410 --> 00:00:16.700]   this\n[00:00:16.700 --> 00:00:16.840]   is\n[00:00:16.840 --> 00:00:17.200]   joint\n")
expected = [' the robustness of neural networks.', ' And this is joint']
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 48, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got ['the robust ness of neural networks .'] instead of [' the robustness of neural networks.', ' And this is joint']

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

LLM Generation

Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

Output

Here's the `merge()` function that calls `parse_transcript()` and merges words into sentences that end with a period:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences
Explanation: 1. The `merge()` function takes the `content` string as input, which contains the transcript data in the specified format. 2. It calls the `parse_transcript()` function to parse the content and obtain a list of `transcript_segments`. Each segment is a tuple containing the start time, end time, and text. 3. We initialize an empty list called `sentences` to store the merged sentences. 4. We also initialize an empty string called `current_sentence` to store the words of the current sentence being built. 5. We iterate over each segment in `transcript_segments`. For each segment, we only need the `text` part, so we use `_` to ignore the start and end times. 6. We append the `text` of each segment to `current_sentence`, followed by a space to separate the words. 7. If the `text` ends with a period (`.`), it indicates the end of a sentence. In this case: - We append the `current_sentence` (after removing leading/trailing whitespace using `strip()`) to the `sentences` list. - We reset `current_sentence` to an empty string to start building the next sentence. 8. Finally, we return the list of merged sentences. Using the provided example data, the `merge()` function will return the following list of sentences:
1
2
3
4
[
    "the robust ness of neural networks.",
    "And this is joint"
]
Note that the second sentence is incomplete because the example data doesn't include a period at the end of the last segment. The function will merge words until it encounters a period or reaches the end of the transcript.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def parse_transcript(content):
    lines = content.split("\n")
    transcript = []

    for line in lines:
        if " --> " in line:
            start_time, end_time = line.split(" --> ")
            start_time = start_time.strip()
            end_time = end_time.strip()
        elif line.strip() != "":
            text = line.strip()
            transcript.append((start_time, end_time, text))

    return transcript

def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def parse_transcript(content):
    lines = content.split("\n")
    transcript = []

    for line in lines:
        if " --> " in line:
            start_time, end_time = line.split(" --> ")
            start_time = start_time.strip()
            end_time = end_time.strip()
        elif line.strip() != "":
            text = line.strip()
            transcript.append((start_time, end_time, text))

    return transcript

def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith("."):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    return sentences




def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments


answer = merge("[00:00:14.240 --> 00:00:14.420]   the\n[00:00:14.420 --> 00:00:14.860]   robust\n[00:00:14.860 --> 00:00:15.020]  ness\n[00:00:15.020 --> 00:00:15.140]   of\n[00:00:15.140 --> 00:00:15.500]   neural\n[00:00:15.500 --> 00:00:15.870]   networks\n[00:00:15.870 --> 00:00:16.200]  .\n[00:00:16.200 --> 00:00:16.410]   And\n[00:00:16.410 --> 00:00:16.700]   this\n[00:00:16.700 --> 00:00:16.840]   is\n[00:00:16.840 --> 00:00:17.200]   joint\n")
expected = [' the robustness of neural networks.', ' And this is joint']
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 46, in <module> answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 18, in merge transcript_segments = parse_transcript(content) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 36, in parse_transcript matches = re.findall(pattern, content) ^^ NameError: name 're' is not defined

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

LLM Generation

Query

Given a parse function like def parse_transcript(content): transcript_segments = [] pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)' matches = re.findall(pattern, content) for start_time, end_time, text in matches: start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds() transcript_segments.append((start_seconds, end_seconds, text)) return transcript_segments for data like [00:00:14.240 --> 00:00:14.420] the [00:00:14.420 --> 00:00:14.860] robust [00:00:14.860 --> 00:00:15.020] ness [00:00:15.020 --> 00:00:15.140] of [00:00:15.140 --> 00:00:15.500] neural [00:00:15.500 --> 00:00:15.870] networks [00:00:15.870 --> 00:00:16.200] . [00:00:16.200 --> 00:00:16.410] And [00:00:16.410 --> 00:00:16.700] this [00:00:16.700 --> 00:00:16.840] is [00:00:16.840 --> 00:00:17.200] joint write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.

Output

Here's the `merge()` function that calls `parse_transcript()` and merges words into sentences ending with a period:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith('.'):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences
Explanation: 1. The `merge()` function takes the `content` string as input, which represents the transcript data. 2. It calls the `parse_transcript()` function to parse the transcript data and obtain a list of `transcript_segments`, where each segment is a tuple containing the start time, end time, and text. 3. It initializes an empty list called `sentences` to store the merged sentences. 4. It initializes an empty string called `current_sentence` to build the current sentence. 5. It iterates over each segment in `transcript_segments` and performs the following steps: - It appends the `text` of the segment to `current_sentence` followed by a space. - If the `text` ends with a period ('.'), it appends the `current_sentence` (stripped of leading/trailing whitespace) to the `sentences` list and resets `current_sentence` to an empty string. 6. After the loop, if there is any remaining text in `current_sentence` (i.e., if the last segment didn't end with a period), it appends the `current_sentence` (stripped of leading/trailing whitespace) to the `sentences` list. 7. Finally, it returns the `sentences` list containing the merged sentences. Example usage:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
content = """
[00:00:14.240 --> 00:00:14.420]   the
[00:00:14.420 --> 00:00:14.860]   robust
[00:00:14.860 --> 00:00:15.020]  ness
[00:00:15.020 --> 00:00:15.140]   of
[00:00:15.140 --> 00:00:15.500]   neural
[00:00:15.500 --> 00:00:15.870]   networks
[00:00:15.870 --> 00:00:16.200]  .
[00:00:16.200 --> 00:00:16.410]   And
[00:00:16.410 --> 00:00:16.700]   this
[00:00:16.700 --> 00:00:16.840]   is
[00:00:16.840 --> 00:00:17.200]   joint
"""

sentences = merge(content)
print(sentences)
Output:
1
['the robust ness of neural networks.', 'And this is joint']
The `merge()` function merges the words into sentences ending with a period and returns a list of strings representing the merged sentences.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import re

def parse_transcript(content):
    pattern = r"\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]\s*(.*)"
    matches = re.findall(pattern, content)
    return [(start, end, text.strip()) for start, end, text in matches]

def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith('.'):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import re

def parse_transcript(content):
    pattern = r"\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]\s*(.*)"
    matches = re.findall(pattern, content)
    return [(start, end, text.strip()) for start, end, text in matches]

def merge(content):
    transcript_segments = parse_transcript(content)
    sentences = []
    current_sentence = ""

    for _, _, text in transcript_segments:
        current_sentence += text + " "
        if text.endswith('.'):
            sentences.append(current_sentence.strip())
            current_sentence = ""

    if current_sentence:
        sentences.append(current_sentence.strip())

    return sentences




def parse_transcript(content):
    transcript_segments = []
    pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\]  (.*)'
    matches = re.findall(pattern, content)

    for start_time, end_time, text in matches:
        start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
        end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
        transcript_segments.append((start_seconds, end_seconds, text))

    return transcript_segments


answer = merge("[00:00:14.240 --> 00:00:14.420]   the\n[00:00:14.420 --> 00:00:14.860]   robust\n[00:00:14.860 --> 00:00:15.020]  ness\n[00:00:15.020 --> 00:00:15.140]   of\n[00:00:15.140 --> 00:00:15.500]   neural\n[00:00:15.500 --> 00:00:15.870]   networks\n[00:00:15.870 --> 00:00:16.200]  .\n[00:00:16.200 --> 00:00:16.410]   And\n[00:00:16.410 --> 00:00:16.700]   this\n[00:00:16.700 --> 00:00:16.840]   is\n[00:00:16.840 --> 00:00:17.200]   joint\n")
expected = [' the robustness of neural networks.', ' And this is joint']
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 41, in <module> answer = merge("[00:00:14.240 --> 00:00:14.420] the\n[00:00:14.420 --> 00:00:14.860] robust\n[00:00:14.860 --> 00:00:15.020] ness\n[00:00:15.020 --> 00:00:15.140] of\n[00:00:15.140 --> 00:00:15.500] neural\n[00:00:15.500 --> 00:00:15.870] networks\n[00:00:15.870 --> 00:00:16.200] .\n[00:00:16.200 --> 00:00:16.410] And\n[00:00:16.410 --> 00:00:16.700] this\n[00:00:16.700 --> 00:00:16.840] is\n[00:00:16.840 --> 00:00:17.200] joint\n") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 10, in merge transcript_segments = parse_transcript(content) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 34, in parse_transcript start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds() ^^^^^^^^^ NameError: name 'timedelta' is not defined

Substring Evaluation

Testing if the previous output contains the string All tests passed: False