What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To load a pre-trained model with a language modeling (LM) head using the `transformers` library from Hugging Face, you should use the appropriate class for the type of language modeling task you are interested in. The class `AutoModelWithLMHead` is deprecated and has been replaced by more specific classes like `AutoModelForCausalLM`, `AutoModelForMaskedLM`, or `AutoModelForSeq2SeqLM` depending on the type of language model. Here's how you can use the appropriate class: 1. **Causal Language Modeling** (e.g., GPT-2, GPT-3, etc.):
1 2 3 4 5 6 | from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "gpt2" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 6 | from transformers import AutoModelForMaskedLM, AutoTokenizer model_name = "bert-base-uncased" model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 6 | from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "t5-base" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 6 | from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "patrickvonplaten/bert2bert_cnn_daily_mail" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
When you want to load a model with a language modeling (LM) head using the `AutoModel` class from the Hugging Face Transformers library, you should use the `AutoModelForCausalLM` or `AutoModelForSeq2SeqLM` classes, depending on your specific use case. The `AutoModel` class itself doesn't include the language modeling head, which is necessary for tasks such as text generation. Here's a step-by-step guide to help you load a model with an LM head: 1. **Install the Transformers library** (if you haven't already):
1 2 | pip install transformers |
1 2 3 4 5 6 | from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "gpt2" # or any other model name with a causal LM head model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 6 | from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "t5-small" # or any other model name with a seq2seq LM head model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 6 | input_text = "Once upon a time" input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate(input_ids, max_length=50, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) |
1 2 3 4 5 6 | input_text = "Translate English to French: The house is lovely." input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate(input_ids, max_length=50) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
When working with the Hugging Face Transformers library, if you want to load a model with a language modeling (LM) head using the `AutoModel.from_pretrained` method, you'll want to use `AutoModelForCausalLM` for causal language modeling (e.g., GPT-2), `AutoModelForMaskedLM` for masked language modeling (e.g., BERT), or `AutoModelForSeq2SeqLM` for sequence-to-sequence models (e.g., T5). Here is how you can do it: ### For Causal Language Modeling (e.g., GPT-2):
1 2 3 4 | from transformers import AutoModelForCausalLM model_name = "gpt2" model = AutoModelForCausalLM.from_pretrained(model_name) |
1 2 3 4 | from transformers import AutoModelForMaskedLM model_name = "bert-base-uncased" model = AutoModelForMaskedLM.from_pretrained(model_name) |
1 2 3 4 | from transformers import AutoModelForSeq2SeqLM model_name = "t5-small" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
When working with the Hugging Face Transformers library, `AutoModel.from_pretrained` is used to load a pretrained model, but it doesn't automatically include a language modeling (LM) head. If you want to load a model with an LM head, you should use one of the specific classes designed for language modeling, such as `AutoModelForCausalLM` for causal language models or `AutoModelForSeq2SeqLM` for sequence-to-sequence models. Here are the steps to load a model with an LM head: ### Causal Language Modeling If you're working with a model for causal language modeling (e.g., GPT-2, GPT-3), you would use `AutoModelForCausalLM`:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "gpt2" # Replace with the model you want to use model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Example usage input_text = "Hello, my name is" input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) |
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "t5-small" # Replace with the model you want to use model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Example usage input_text = "translate English to French: Hello, my name is" input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from transformers import AutoModelForMaskedLM, AutoTokenizer model_name = "bert-base-uncased" # Replace with the model you want to use model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Example usage input_text = "Hello, my name is [MASK]." input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model(input_ids) predictions = output.logits masked_index = input_ids[0].tolist().index(tokenizer.mask_token_id) predicted_token_id = predictions[0, masked_index].argmax(dim=-1).item() predicted_token = tokenizer.decode([predicted_token_id]) print(f"Predicted token: {predicted_token}") |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
When working with the Hugging Face Transformers library, `AutoModel.from_pretrained` is a generic method for loading models. If you want to load a model specifically for language modeling tasks (which includes a language modeling head), you should use `AutoModelForCausalLM`, `AutoModelForMaskedLM`, or other specific classes depending on the task. Here's how you can do it: ### For Causal Language Modeling (e.g., GPT-2) If you're working with causal language models like GPT-2, you can use `AutoModelForCausalLM`:
1 2 3 4 5 | from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "gpt2" # You can replace this with the model of your choice model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 | from transformers import AutoModelForMaskedLM, AutoTokenizer model_name = "bert-base-uncased" # You can replace this with the model of your choice model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
1 2 3 4 5 | from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "t5-base" # You can replace this with the model of your choice model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) |
Testing if the previous output contains the string AutoModelForCausalLM
: True