What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` to make it an auto model with an LM head, use the `add_cross_attention` argument and set it to `True`. For example:
1 | auto_model = AutoModel.from_pretrained("bert-base-uncased", add_cross_attention=True) |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load the model and tokenizer model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") # Prepare the input text input_text = "I love this movie!" # Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt") # Make a prediction outputs = model(**inputs) # Get the predicted class predicted_class_id = outputs.logits.argmax().item() # Get the predicted class label predicted_class_label = model.config.id2label[predicted_class_id] # Print the predicted class label print(f"Predicted class: {predicted_class_label}") |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` to return an auto model with an LM head, you can use the following code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") # Use the model inputs = tokenizer("Hello, world!", return_tensors="pt") outputs = model(**inputs) # Get the logits logits = outputs.logits # Get the predictions predictions = torch.argmax(logits, dim=-1) |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | from transformers import AutoModelWithLMHead, AutoTokenizer # Load the AutoModelWithLMHead model model = AutoModelWithLMHead.from_pretrained("model_name") # Load the matching tokenizer tokenizer = AutoTokenizer.from_pretrained("model_name") # Prepare text for input input_ids = tokenizer.encode("Hello, world!", return_tensors="pt") # Generate a response output = model.generate(input_ids, max_length=128) # Decode the output into text output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To use AutoModel.from_pretrained to load an auto model with a language modeling head, you can specify the model type as "auto" and set the `add_cross_attention` parameter to `True`. Here's an example:
1 2 3 4 | from transformers import AutoModelForSequenceClassification # Load the auto model with a language modeling head model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", add_cross_attention=True) |
Testing if the previous output contains the string AutoModelForCausalLM
: False