What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
Okay, the issue is that `AutoModel.from_pretrained` is designed to load the **base** transformer model *without* any specific task head (like a language modeling head, classification head, etc.). It primarily outputs the hidden states from the last layer. To get a model *with* a language modeling (LM) head, you need to use a more specific `AutoModelFor...` class from the Hugging Face `transformers` library. Here's what you need to do, depending on the type of language modeling you want: **1. For Causal Language Modeling (CLM) - Predicting the next token (like GPT-2, Llama, Mistral):** Use `AutoModelForCausalLM`. This class loads the base model *and* adds a head on top specifically designed for predicting the next token in a sequence.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "gpt2" # Or "meta-llama/Llama-2-7b-hf", "mistralai/Mistral-7B-v0.1", etc. # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the model WITH the Causal LM head model = AutoModelForCausalLM.from_pretrained(model_name) # Now you can use this model for tasks like text generation inputs = tokenizer("Hello, my name is", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | from transformers import AutoTokenizer, AutoModelForMaskedLM import torch model_name = "bert-base-uncased" # Or "roberta-base", etc. # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the model WITH the Masked LM head model = AutoModelForMaskedLM.from_pretrained(model_name) # Example usage text = f"Paris is the capital of {tokenizer.mask_token}." inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Find the predicted token for the [MASK] position mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] predicted_token_id = torch.argmax(logits[0, mask_token_index], dim=-1) predicted_token = tokenizer.decode(predicted_token_id) print(f"Original: {text}") print(f"Predicted token for [MASK]: {predicted_token}") # Should be 'france' |
Testing if the previous output contains the string AutoModelForCausalLM
: True