What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix the `AutoModel.from_pretrained` to make it an auto model with a language modeling head, you can use the `AutoModelForCausalLM` class from the Hugging Face Transformers library. Here's an example of how to use it:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from transformers import AutoModelForCausalLM, AutoTokenizer # Load the pre-trained model and tokenizer model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Encode the input text input_text = "This is an example of input text." input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate text using the language model output = model.generate(input_ids, max_length=100, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=3) # Decode the output generated_text = tokenizer.batch_decode(output, skip_special_tokens=True) print(generated_text) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` and make it an auto model with a language modeling head, you need to specify the `add_cross_attention` parameter when loading the model. Here's how you can do it:
1 2 3 | from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("model_name", add_cross_attention=False) |
1 2 3 | from transformers import GPT2LMHeadModel model = GPT2LMHeadModel.from_pretrained("model_name") |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix the `AutoModel.from_pretrained` to make it an auto model with a language model head, you need to use the `AutoModelForCausalLM` class instead of `AutoModel`. The `AutoModelForCausalLM` class is designed specifically for language modeling tasks and includes a language model head on top of the transformer model. Here's an example of how to use `AutoModelForCausalLM.from_pretrained`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from transformers import AutoModelForCausalLM, AutoTokenizer # Load the pre-trained model and tokenizer model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Encode the input text input_text = "Hello, how are you?" inputs = tokenizer.encode(input_text, return_tensors="pt") # Generate output outputs = model.generate(inputs, max_length=50, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1) # Decode the output generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` to make it an auto model with an LM head (language model head), you need to use the `AutoModelForCausalLM` class from the Hugging Face Transformers library. Here's an example:
1 2 3 | from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("gpt2") |
1 | model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small") |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` and make it an auto model with a language modeling head, you need to use the `AutoModelWithLMHead` class provided by the Hugging Face Transformers library. This class is designed to load pre-trained language models with a language modeling head, which is suitable for tasks like text generation, language modeling, and causal language modeling. Here's an example of how you can use `AutoModelWithLMHead`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from transformers import AutoModelWithLMHead, AutoTokenizer # Load the pre-trained model and tokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) # Prepare the input input_text = "Hello, how are you?" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate output output = model(input_ids, labels=input_ids) loss = output.loss logits = output.logits # You can now use the logits for tasks like text generation, language modeling, or causal language modeling. |
Testing if the previous output contains the string AutoModelForCausalLM
: False