What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` and make it `AutoModelWithLMHead`, you can follow these steps: 1. Make sure you have the `transformers` library installed. If not, you can install it using pip:
1 2 | pip install transformers |
1 2 | from transformers import AutoConfig, AutoModelWithLMHead |
1 2 | config = AutoConfig.from_pretrained("model_name_or_path") |
1 2 | model = AutoModelWithLMHead.from_config(config) |
1 2 | model = AutoModelWithLMHead.from_pretrained("model_name_or_path") |
1 2 3 4 | from transformers import AutoConfig, AutoModelWithLMHead config = AutoConfig.from_pretrained("bert-base-uncased") model = AutoModelWithLMHead.from_config(config) |
1 2 3 | from transformers import AutoModelWithLMHead model = AutoModelWithLMHead.from_pretrained("bert-base-uncased") |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To use an auto model with a language modeling head, you can use the `AutoModelForCausalLM` class instead of `AutoModel`. The `AutoModelForCausalLM` class is specifically designed for language modeling tasks and includes the language modeling head. Here's how you can modify your code:
1 2 3 4 5 6 | from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "your_model_name" # Replace with the desired model name or path tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` to make it an auto model with an LM head, you can use `AutoModelForCausalLM.from_pretrained` or `AutoModelForMaskedLM.from_pretrained` depending on the type of language modeling task you want to perform. 1. For causal language modeling (e.g., text generation), use `AutoModelForCausalLM.from_pretrained`:
1 2 3 | from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("model_name_or_path") |
1 2 3 | from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("model_name_or_path") |
1 2 3 4 5 6 7 8 9 10 | from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("model_name_or_path") prompt = "Once upon a time" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=100, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("model_name_or_path") text = "The quick brown [MASK] jumps over the lazy dog." input_ids = tokenizer.encode(text, return_tensors="pt") with torch.no_grad(): outputs = model(input_ids) predictions = outputs[0] predicted_token_id = torch.argmax(predictions[0, 4]).item() predicted_token = tokenizer.decode([predicted_token_id]) print(predicted_token) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To fix `AutoModel.from_pretrained` and make it use `AutoModelWithLMHead`, you can simply replace `AutoModel` with `AutoModelWithLMHead` in your code. Here's an example of how you can modify the code:
1 2 3 4 5 6 | from transformers import AutoTokenizer, AutoModelWithLMHead model_name = "bert-base-uncased" # Replace with the desired model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) |
Testing if the previous output contains the string AutoModelForCausalLM
: False
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
To use `AutoModelWithLMHead` instead of `AutoModel`, you simply need to import the correct class from the Hugging Face Transformers library and use it in your code. Here's how you can modify your code: 1. Update the import statement:
1 | from transformers import AutoModelWithLMHead |
1 | model = AutoModelWithLMHead.from_pretrained("pretrained_model_name_or_path") |
1 2 3 4 5 6 7 | from transformers import AutoModelWithLMHead, AutoTokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) # Rest of your code |
1 | pip install transformers |
Testing if the previous output contains the string AutoModelForCausalLM
: False