What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
# Loading Models with a Language Modeling Head To load a model with a language modeling (LM) head using Hugging Face's Transformers library, you need to use the specific `Auto` class that corresponds to the type of language modeling you want to do. The `AutoModel.from_pretrained()` function only loads the base model without any task-specific heads. ## Solution Replace `AutoModel.from_pretrained()` with one of these classes depending on your needs:
1 2 3 4 5 6 7 8 9 10 11 | # For autoregressive/causal language models (GPT, LLaMA, etc.) from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("model_name") # For masked language models (BERT, RoBERTa, etc.) from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("model_name") # For sequence-to-sequence models (T5, BART, etc.) from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("model_name") |
1 2 3 4 5 6 7 8 9 10 | from transformers import AutoModelForCausalLM, AutoTokenizer # Load a GPT-2 model with LM head model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") # Now you can use it for text generation inputs = tokenizer("Hello, I'm a language model", return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
Testing if the previous output contains the string AutoModelForCausalLM
: True
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
What do I do to fix AutoModel.from_pretrained to make it auto model with lm head
# How to Use AutoModelForCausalLM Instead of AutoModel If you're trying to load a model with a language modeling head using Hugging Face's Transformers library, you should use the specific Auto classes designed for this purpose rather than the base `AutoModel`. ## Solution: Replace:
1 2 | from transformers import AutoModel model = AutoModel.from_pretrained("your-model-name") |
1 2 3 4 5 6 7 8 9 10 11 | # For causal language models (GPT, OPT, Llama, etc.) from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("your-model-name") # For masked language models (BERT, RoBERTa, etc.) from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("your-model-name") # For sequence-to-sequence models (T5, BART, etc.) from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("your-model-name") |
Testing if the previous output contains the string AutoModelForCausalLM
: True