Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Okay, here's the vectorized version of the `update` function using NumPy operations.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | import numpy as np def update_original(high, highest_number, delta): """Original loop-based implementation for comparison.""" # Make copies to avoid modifying originals if needed for testing high = np.copy(np.asarray(high)) delta = np.asarray(delta) for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high def update(high, highest_number, delta): """ Vectorized update function. Updates elements of 'high' based on the value at 'highest_number' and corresponding 'delta' values, skipping the update for the element at 'highest_number' itself. Args: high (np.ndarray): The array to be updated. highest_number (int): The index of the reference element in 'high' and 'delta'. delta (np.ndarray): An array of the same shape as 'high' used in the update calculation. Returns: np.ndarray: The updated 'high' array. """ # Ensure inputs are numpy arrays high = np.asarray(high) delta = np.asarray(delta) # --- Vectorized Logic --- # 1. Calculate the potential new value for all elements based on the highest_number element. # scalar_part = high[highest_number] + delta[highest_number] # potential_new_values = scalar_part - delta potential_new_values = high[highest_number] + delta[highest_number] - delta # 2. Apply the minimum operation element-wise between the original 'high' # and the calculated potential new values. # This calculates min(high[i], potential_new_value) for all i. updated_high = np.minimum(high, potential_new_values) # 3. Restore the original value at the 'highest_number' index, # because the original loop explicitly skipped updating this element. updated_high[highest_number] = high[highest_number] return updated_high # --- Example Usage --- high_arr = np.array([10.0, 25.0, 8.0, 30.0, 15.0]) delta_arr = np.array([1.0, 2.0, 3.0, 1.5, 2.5]) highest_idx = 1 # Index of the value 25.0 # Run the original loop original_result = update_original(high_arr, highest_idx, delta_arr) # Run the vectorized version vectorized_result = update(high_arr, highest_idx, delta_arr) print("Original array:", high_arr) print("Delta array:", delta_arr) print("Highest index:", highest_idx) print("-" * 20) print("Original loop result: ", original_result) print("Vectorized result: ", vectorized_result) # Verify they are the same print("Results are equal:", np.array_equal(original_result, vectorized_result)) # Example Calculation Breakdown (for highest_idx = 1): # high[1] = 25.0, delta[1] = 2.0 # scalar_part = 25.0 + 2.0 = 27.0 # potential_new_values = 27.0 - [1.0, 2.0, 3.0, 1.5, 2.5] # = [26.0, 25.0, 24.0, 25.5, 24.5] # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [10.0, 25.0, 8.0, 25.5, 14.5] <- Note: typo in manual calc, should be 15.0 vs 24.5 -> 14.5, wait no, 15.0 vs 24.5 -> 15.0 # Let's re-calculate: # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [min(10.0, 26.0), min(25.0, 25.0), min(8.0, 24.0), min(30.0, 25.5), min(15.0, 24.5)] # = [10.0, 25.0, 8.0, 25.5, 15.0] # Restore original value at index 1: # updated_high[1] = high_arr[1] = 25.0 # Final result: [10.0, 25.0, 8.0, 25.5, 15.0] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | import numpy as np def update_original(high, highest_number, delta): """Original loop-based implementation for comparison.""" # Make copies to avoid modifying originals if needed for testing high = np.copy(np.asarray(high)) delta = np.asarray(delta) for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high def update(high, highest_number, delta): """ Vectorized update function. Updates elements of 'high' based on the value at 'highest_number' and corresponding 'delta' values, skipping the update for the element at 'highest_number' itself. Args: high (np.ndarray): The array to be updated. highest_number (int): The index of the reference element in 'high' and 'delta'. delta (np.ndarray): An array of the same shape as 'high' used in the update calculation. Returns: np.ndarray: The updated 'high' array. """ # Ensure inputs are numpy arrays high = np.asarray(high) delta = np.asarray(delta) # --- Vectorized Logic --- # 1. Calculate the potential new value for all elements based on the highest_number element. # scalar_part = high[highest_number] + delta[highest_number] # potential_new_values = scalar_part - delta potential_new_values = high[highest_number] + delta[highest_number] - delta # 2. Apply the minimum operation element-wise between the original 'high' # and the calculated potential new values. # This calculates min(high[i], potential_new_value) for all i. updated_high = np.minimum(high, potential_new_values) # 3. Restore the original value at the 'highest_number' index, # because the original loop explicitly skipped updating this element. updated_high[highest_number] = high[highest_number] return updated_high # --- Example Usage --- high_arr = np.array([10.0, 25.0, 8.0, 30.0, 15.0]) delta_arr = np.array([1.0, 2.0, 3.0, 1.5, 2.5]) highest_idx = 1 # Index of the value 25.0 # Run the original loop original_result = update_original(high_arr, highest_idx, delta_arr) # Run the vectorized version vectorized_result = update(high_arr, highest_idx, delta_arr) print("Original array:", high_arr) print("Delta array:", delta_arr) print("Highest index:", highest_idx) print("-" * 20) print("Original loop result: ", original_result) print("Vectorized result: ", vectorized_result) # Verify they are the same print("Results are equal:", np.array_equal(original_result, vectorized_result)) # Example Calculation Breakdown (for highest_idx = 1): # high[1] = 25.0, delta[1] = 2.0 # scalar_part = 25.0 + 2.0 = 27.0 # potential_new_values = 27.0 - [1.0, 2.0, 3.0, 1.5, 2.5] # = [26.0, 25.0, 24.0, 25.5, 24.5] # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [10.0, 25.0, 8.0, 25.5, 14.5] <- Note: typo in manual calc, should be 15.0 vs 24.5 -> 14.5, wait no, 15.0 vs 24.5 -> 15.0 # Let's re-calculate: # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [min(10.0, 26.0), min(25.0, 25.0), min(8.0, 24.0), min(30.0, 25.5), min(15.0, 24.5)] # = [10.0, 25.0, 8.0, 25.5, 15.0] # Restore original value at index 1: # updated_high[1] = high_arr[1] = 25.0 # Final result: [10.0, 25.0, 8.0, 25.5, 15.0] |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update_original(high, highest_number, delta): """Original loop-based implementation for comparison.""" # Make copies to avoid modifying originals if needed for testing high = np.copy(np.asarray(high)) delta = np.asarray(delta) for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high def update(high, highest_number, delta): """ Vectorized update function. Updates elements of 'high' based on the value at 'highest_number' and corresponding 'delta' values, skipping the update for the element at 'highest_number' itself. Args: high (np.ndarray): The array to be updated. highest_number (int): The index of the reference element in 'high' and 'delta'. delta (np.ndarray): An array of the same shape as 'high' used in the update calculation. Returns: np.ndarray: The updated 'high' array. """ # Ensure inputs are numpy arrays high = np.asarray(high) delta = np.asarray(delta) # --- Vectorized Logic --- # 1. Calculate the potential new value for all elements based on the highest_number element. # scalar_part = high[highest_number] + delta[highest_number] # potential_new_values = scalar_part - delta potential_new_values = high[highest_number] + delta[highest_number] - delta # 2. Apply the minimum operation element-wise between the original 'high' # and the calculated potential new values. # This calculates min(high[i], potential_new_value) for all i. updated_high = np.minimum(high, potential_new_values) # 3. Restore the original value at the 'highest_number' index, # because the original loop explicitly skipped updating this element. updated_high[highest_number] = high[highest_number] return updated_high # --- Example Usage --- high_arr = np.array([10.0, 25.0, 8.0, 30.0, 15.0]) delta_arr = np.array([1.0, 2.0, 3.0, 1.5, 2.5]) highest_idx = 1 # Index of the value 25.0 # Run the original loop original_result = update_original(high_arr, highest_idx, delta_arr) # Run the vectorized version vectorized_result = update(high_arr, highest_idx, delta_arr) print("Original array:", high_arr) print("Delta array:", delta_arr) print("Highest index:", highest_idx) print("-" * 20) print("Original loop result: ", original_result) print("Vectorized result: ", vectorized_result) # Verify they are the same print("Results are equal:", np.array_equal(original_result, vectorized_result)) # Example Calculation Breakdown (for highest_idx = 1): # high[1] = 25.0, delta[1] = 2.0 # scalar_part = 25.0 + 2.0 = 27.0 # potential_new_values = 27.0 - [1.0, 2.0, 3.0, 1.5, 2.5] # = [26.0, 25.0, 24.0, 25.5, 24.5] # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [10.0, 25.0, 8.0, 25.5, 14.5] <- Note: typo in manual calc, should be 15.0 vs 24.5 -> 14.5, wait no, 15.0 vs 24.5 -> 15.0 # Let's re-calculate: # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [min(10.0, 26.0), min(25.0, 25.0), min(8.0, 24.0), min(30.0, 25.5), min(15.0, 24.5)] # = [10.0, 25.0, 8.0, 25.5, 15.0] # Restore original value at index 1: # updated_high[1] = high_arr[1] = 25.0 # Final result: [10.0, 25.0, 8.0, 25.5, 15.0] Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
Yes, the student's code uses NumPy array operations (`np.asarray`, arithmetic operations on arrays like `-`, `np.minimum`, and array indexing/assignment) to perform the calculation without an explicit Python `for` loop iterating through the elements for the core update logic. The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | import numpy as np def update_original(high, highest_number, delta): """Original loop-based implementation for comparison.""" # Make copies to avoid modifying originals if needed for testing high = np.copy(np.asarray(high)) delta = np.asarray(delta) for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high def update(high, highest_number, delta): """ Vectorized update function. Updates elements of 'high' based on the value at 'highest_number' and corresponding 'delta' values, skipping the update for the element at 'highest_number' itself. Args: high (np.ndarray): The array to be updated. highest_number (int): The index of the reference element in 'high' and 'delta'. delta (np.ndarray): An array of the same shape as 'high' used in the update calculation. Returns: np.ndarray: The updated 'high' array. """ # Ensure inputs are numpy arrays high = np.asarray(high) delta = np.asarray(delta) # --- Vectorized Logic --- # 1. Calculate the potential new value for all elements based on the highest_number element. # scalar_part = high[highest_number] + delta[highest_number] # potential_new_values = scalar_part - delta potential_new_values = high[highest_number] + delta[highest_number] - delta # 2. Apply the minimum operation element-wise between the original 'high' # and the calculated potential new values. # This calculates min(high[i], potential_new_value) for all i. updated_high = np.minimum(high, potential_new_values) # 3. Restore the original value at the 'highest_number' index, # because the original loop explicitly skipped updating this element. updated_high[highest_number] = high[highest_number] return updated_high # --- Example Usage --- high_arr = np.array([10.0, 25.0, 8.0, 30.0, 15.0]) delta_arr = np.array([1.0, 2.0, 3.0, 1.5, 2.5]) highest_idx = 1 # Index of the value 25.0 # Run the original loop original_result = update_original(high_arr, highest_idx, delta_arr) # Run the vectorized version vectorized_result = update(high_arr, highest_idx, delta_arr) print("Original array:", high_arr) print("Delta array:", delta_arr) print("Highest index:", highest_idx) print("-" * 20) print("Original loop result: ", original_result) print("Vectorized result: ", vectorized_result) # Verify they are the same print("Results are equal:", np.array_equal(original_result, vectorized_result)) # Example Calculation Breakdown (for highest_idx = 1): # high[1] = 25.0, delta[1] = 2.0 # scalar_part = 25.0 + 2.0 = 27.0 # potential_new_values = 27.0 - [1.0, 2.0, 3.0, 1.5, 2.5] # = [26.0, 25.0, 24.0, 25.5, 24.5] # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [10.0, 25.0, 8.0, 25.5, 14.5] <- Note: typo in manual calc, should be 15.0 vs 24.5 -> 14.5, wait no, 15.0 vs 24.5 -> 15.0 # Let's re-calculate: # updated_high = np.minimum([10.0, 25.0, 8.0, 30.0, 15.0], [26.0, 25.0, 24.0, 25.5, 24.5]) # = [min(10.0, 26.0), min(25.0, 25.0), min(8.0, 24.0), min(30.0, 25.5), min(15.0, 24.5)] # = [10.0, 25.0, 8.0, 25.5, 15.0] # Restore original value at index 1: # updated_high[1] = high_arr[1] = 25.0 # Final result: [10.0, 25.0, 8.0, 25.5, 15.0] import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
1 2 3 4 5 6 7 8 | Original array: [10. 25. 8. 30. 15.] Delta array: [1. 2. 3. 1.5 2.5] Highest index: 1</p> <hr /> <p>Original loop result: [10. 25. 8. 25.5 15. ] Vectorized result: [10. 25. 8. 25.5 15. ] Results are equal: True All tests passed |
Testing if the previous output contains the string All tests passed
: True