Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated `high` array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values using vectorized operations new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array where the new values are smaller and the mask is True high[mask] = np.minimum(high[mask], new_values) return high |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated `high` array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values using vectorized operations new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array where the new values are smaller and the mask is True high[mask] = np.minimum(high[mask], new_values) return high |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated `high` array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values using vectorized operations new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array where the new values are smaller and the mask is True high[mask] = np.minimum(high[mask], new_values) return high Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated `high` array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values using vectorized operations new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array where the new values are smaller and the mask is True high[mask] = np.minimum(high[mask], new_values) return high import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values for all indices except highest_number new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array using np.minimum, applying the mask high[mask] = np.minimum(high[mask], new_values) return high |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values for all indices except highest_number new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array using np.minimum, applying the mask high[mask] = np.minimum(high[mask], new_values) return high |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values for all indices except highest_number new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array using np.minimum, applying the mask high[mask] = np.minimum(high[mask], new_values) return high Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the potential new values for all indices except highest_number new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update the high array using np.minimum, applying the mask high[mask] = np.minimum(high[mask], new_values) return high import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the update values using vectorized operations update_values = high[highest_number] + delta[highest_number] - delta # Update the 'high' array using the mask and np.minimum high[mask] = np.minimum(high[mask], update_values[mask]) return high |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the update values using vectorized operations update_values = high[highest_number] + delta[highest_number] - delta # Update the 'high' array using the mask and np.minimum high[mask] = np.minimum(high[mask], update_values[mask]) return high |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the update values using vectorized operations update_values = high[highest_number] + delta[highest_number] - delta # Update the 'high' array using the mask and np.minimum high[mask] = np.minimum(high[mask], update_values[mask]) return high Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high: A NumPy array representing the 'high' values. highest_number: The index of the highest number in 'high'. delta: A NumPy array representing the 'delta' values. Returns: The updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate the update values using vectorized operations update_values = high[highest_number] + delta[highest_number] - delta # Update the 'high' array using the mask and np.minimum high[mask] = np.minimum(high[mask], update_values[mask]) return high import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate potential updates for all elements except highest_number potential_updates = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the potential update is smaller, excluding highest_number high[mask] = np.minimum(high[mask], potential_updates) return high |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate potential updates for all elements except highest_number potential_updates = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the potential update is smaller, excluding highest_number high[mask] = np.minimum(high[mask], potential_updates) return high |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate potential updates for all elements except highest_number potential_updates = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the potential update is smaller, excluding highest_number high[mask] = np.minimum(high[mask], potential_updates) return high Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update function. Args: high (np.ndarray): Array of values to potentially update. highest_number (int): Index of the element with the highest value. delta (np.ndarray): Array of delta values. Returns: np.ndarray: Updated 'high' array. """ # Create a mask to exclude the highest_number index mask = np.arange(len(high)) != highest_number # Calculate potential updates for all elements except highest_number potential_updates = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the potential update is smaller, excluding highest_number high[mask] = np.minimum(high[mask], potential_updates) return high import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
Vectorize this update loop. Call the function `update`: import numpy as np def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high (np.array): Array of values to potentially update. highest_number (int): Index of the element with the highest value in 'high'. delta (np.array): Array of delta values. Returns: np.array: Updated 'high' array. """ # Create a mask to exclude the highest_number element mask = np.arange(len(high)) != highest_number # Calculate potential new values new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the new value is smaller high[mask] = np.minimum(high[mask], new_values) return high |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high (np.array): Array of values to potentially update. highest_number (int): Index of the element with the highest value in 'high'. delta (np.array): Array of delta values. Returns: np.array: Updated 'high' array. """ # Create a mask to exclude the highest_number element mask = np.arange(len(high)) != highest_number # Calculate potential new values new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the new value is smaller high[mask] = np.minimum(high[mask], new_values) return high |
Below is a student's answer to a question about how to vectorize this loop: def update(high, highest_number, delta): for i in range(len(high)): if i != highest_number: high[i] = min(high[i], high[highest_number] + delta[highest_number] - delta[i]) return high Here is their code: import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high (np.array): Array of values to potentially update. highest_number (int): Index of the element with the highest value in 'high'. delta (np.array): Array of delta values. Returns: np.array: Updated 'high' array. """ # Create a mask to exclude the highest_number element mask = np.arange(len(high)) != highest_number # Calculate potential new values new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the new value is smaller high[mask] = np.minimum(high[mask], new_values) return high Did the student try to vectorize the loop? Don't tell me if they are correct or not. (I have tests for that separately which will catch any bugs.) Just tell me if they tried to vectorize the loop. End your answer with either the string "The student passes" if they tried to do a vectorized loop, or "The student fails" if they just wrote a for loop again.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np def update(high, highest_number, delta): """ Vectorized version of the update loop. Args: high (np.array): Array of values to potentially update. highest_number (int): Index of the element with the highest value in 'high'. delta (np.array): Array of delta values. Returns: np.array: Updated 'high' array. """ # Create a mask to exclude the highest_number element mask = np.arange(len(high)) != highest_number # Calculate potential new values new_values = high[highest_number] + delta[highest_number] - delta[mask] # Update 'high' where the new value is smaller high[mask] = np.minimum(high[mask], new_values) return high import numpy as np answer = list(update(np.array([2, 5, 9, 1, 2, 0, 3, 8]), 4, np.array([1, 2, 1, 4, 3, 2, 1, 2]))) expected = [2, 3, 4, 1, 2, 0, 3, 3] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True