A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
To count the total number of 'unholy' 8x8 binary matrices, we'll need to write a C program that generates all possible 8x8 binary matrices and checks each one to see if it meets the 'unholy' condition. Given the constraints, this is computationally intensive, so optimizations or a more efficient algorithm is necessary for practical execution. However, for simplicity, let's outline a brute-force approach in C. Here is a possible implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #include <stdio.h> #include <stdbool.h> #define SIZE 8 // Function to check if a given binary matrix is 'unholy' bool is_unholy(int matrix[SIZE][SIZE]) { for (int i = 0; i < SIZE; i++) { for (int j = 0; j < SIZE; j++) { if (matrix[i][j] == 1) { bool has_neighbor = false; // Check all 4 cardinal directions if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // Up if (i < SIZE-1 && matrix[i+1][j] == 1) has_neighbor = true; // Down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // Left if (j < SIZE-1 && matrix[i][j+1] == 1) has_neighbor = true; // Right if (!has_neighbor) return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generate_matrices(int matrix[SIZE][SIZE], int pos, long long *count) { if (pos == SIZE * SIZE) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / SIZE; int col = pos % SIZE; // Set current cell to 0 and recurse matrix[row][col] = 0; generate_matrices(matrix, pos + 1, count); // Set current cell to 1 and recurse matrix[row][col] = 1; generate_matrices(matrix, pos + 1, count); } // Main function int main() { int matrix[SIZE][SIZE] = {0}; long long count = 0; generate_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #include <stdio.h> #include <stdbool.h> #define SIZE 8 // Function to check if a given binary matrix is 'unholy' bool is_unholy(int matrix[SIZE][SIZE]) { for (int i = 0; i < SIZE; i++) { for (int j = 0; j < SIZE; j++) { if (matrix[i][j] == 1) { bool has_neighbor = false; // Check all 4 cardinal directions if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // Up if (i < SIZE-1 && matrix[i+1][j] == 1) has_neighbor = true; // Down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // Left if (j < SIZE-1 && matrix[i][j+1] == 1) has_neighbor = true; // Right if (!has_neighbor) return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generate_matrices(int matrix[SIZE][SIZE], int pos, long long *count) { if (pos == SIZE * SIZE) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / SIZE; int col = pos % SIZE; // Set current cell to 0 and recurse matrix[row][col] = 0; generate_matrices(matrix, pos + 1, count); // Set current cell to 1 and recurse matrix[row][col] = 1; generate_matrices(matrix, pos + 1, count); } // Main function int main() { int matrix[SIZE][SIZE] = {0}; long long count = 0; generate_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #include <stdio.h> #include <stdbool.h> #define SIZE 8 // Function to check if a given binary matrix is 'unholy' bool is_unholy(int matrix[SIZE][SIZE]) { for (int i = 0; i < SIZE; i++) { for (int j = 0; j < SIZE; j++) { if (matrix[i][j] == 1) { bool has_neighbor = false; // Check all 4 cardinal directions if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // Up if (i < SIZE-1 && matrix[i+1][j] == 1) has_neighbor = true; // Down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // Left if (j < SIZE-1 && matrix[i][j+1] == 1) has_neighbor = true; // Right if (!has_neighbor) return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generate_matrices(int matrix[SIZE][SIZE], int pos, long long *count) { if (pos == SIZE * SIZE) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / SIZE; int col = pos % SIZE; // Set current cell to 0 and recurse matrix[row][col] = 0; generate_matrices(matrix, pos + 1, count); // Set current cell to 1 and recurse matrix[row][col] = 1; generate_matrices(matrix, pos + 1, count); } // Main function int main() { int matrix[SIZE][SIZE] = {0}; long long count = 0; generate_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Timeout: function took too long to complete
Testing if the previous output contains the string 1121231537486377866
: False
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
Creating a C program to count the total number of unholy 8x8 matrices is a complex task that involves combinatorial generation of matrices and checking each one for the "unholy" condition. Due to the exponential growth of possible matrices (2^(8*8) = 2^64), an exhaustive search is impractical. However, we can still outline a feasible approach and the necessary C code for smaller matrices or specific patterns. Below is a simplified version of a C program that provides a framework for counting unholy matrices. This example will not enumerate all 2^64 matrices but will instead outline the steps and provide a basis for further optimization or parallel computation approaches.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include <stdio.h> #include <stdbool.h> // Define the size of the matrix #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1) { bool hasNeighbor = false; // Check all 4 direct cardinal directions if (i > 0 && matrix[i-1][j] == 1) hasNeighbor = true; if (i < N-1 && matrix[i+1][j] == 1) hasNeighbor = true; if (j > 0 && matrix[i][j-1] == 1) hasNeighbor = true; if (j < N-1 && matrix[i][j+1] == 1) hasNeighbor = true; // If no neighbor is found, the matrix is not 'unholy' if (!hasNeighbor) return false; } } } return true; } // Function to generate all possible 8x8 matrices and count unholy ones void generate_and_count_unholy_matrices(int matrix[N][N], int pos, int *count) { if (pos == N * N) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / N; int col = pos % N; matrix[row][col] = 0; generate_and_count_unholy_matrices(matrix, pos + 1, count); matrix[row][col] = 1; generate_and_count_unholy_matrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; int count = 0; generate_and_count_unholy_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %d\n", count); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include <stdio.h> #include <stdbool.h> // Define the size of the matrix #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1) { bool hasNeighbor = false; // Check all 4 direct cardinal directions if (i > 0 && matrix[i-1][j] == 1) hasNeighbor = true; if (i < N-1 && matrix[i+1][j] == 1) hasNeighbor = true; if (j > 0 && matrix[i][j-1] == 1) hasNeighbor = true; if (j < N-1 && matrix[i][j+1] == 1) hasNeighbor = true; // If no neighbor is found, the matrix is not 'unholy' if (!hasNeighbor) return false; } } } return true; } // Function to generate all possible 8x8 matrices and count unholy ones void generate_and_count_unholy_matrices(int matrix[N][N], int pos, int *count) { if (pos == N * N) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / N; int col = pos % N; matrix[row][col] = 0; generate_and_count_unholy_matrices(matrix, pos + 1, count); matrix[row][col] = 1; generate_and_count_unholy_matrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; int count = 0; generate_and_count_unholy_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %d\n", count); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include <stdio.h> #include <stdbool.h> // Define the size of the matrix #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1) { bool hasNeighbor = false; // Check all 4 direct cardinal directions if (i > 0 && matrix[i-1][j] == 1) hasNeighbor = true; if (i < N-1 && matrix[i+1][j] == 1) hasNeighbor = true; if (j > 0 && matrix[i][j-1] == 1) hasNeighbor = true; if (j < N-1 && matrix[i][j+1] == 1) hasNeighbor = true; // If no neighbor is found, the matrix is not 'unholy' if (!hasNeighbor) return false; } } } return true; } // Function to generate all possible 8x8 matrices and count unholy ones void generate_and_count_unholy_matrices(int matrix[N][N], int pos, int *count) { if (pos == N * N) { if (is_unholy(matrix)) { (*count)++; } return; } int row = pos / N; int col = pos % N; matrix[row][col] = 0; generate_and_count_unholy_matrices(matrix, pos + 1, count); matrix[row][col] = 1; generate_and_count_unholy_matrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; int count = 0; generate_and_count_unholy_matrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %d\n", count); return 0; } |
Timeout: function took too long to complete
Testing if the previous output contains the string 1121231537486377866
: False
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
To determine the number of unholy 8x8 binary matrices, we need to write a C program that generates all possible 8x8 binary matrices and checks if each matrix is unholy. An unholy matrix has no isolated 1s, meaning every 1 must have at least one adjacent 1 in one of the four cardinal directions (up, down, left, right). Here is a C program to count the total number of unholy 8x8 matrices:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a 1 in the matrix is isolated bool isIsolated(int matrix[N][N], int i, int j) { // Check the four cardinal directions if (i > 0 && matrix[i-1][j] == 1) return false; // up if (i < N-1 && matrix[i+1][j] == 1) return false; // down if (j > 0 && matrix[i][j-1] == 1) return false; // left if (j < N-1 && matrix[i][j+1] == 1) return false; // right return true; } // Function to check if the matrix is unholy bool isUnholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1 && isIsolated(matrix, i, j)) { return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generateMatrices(int matrix[N][N], int pos, long long *count) { if (pos == N * N) { if (isUnholy(matrix)) { (*count)++; } return; } int i = pos / N; int j = pos % N; // Set current position to 0 and recurse matrix[i][j] = 0; generateMatrices(matrix, pos + 1, count); // Set current position to 1 and recurse matrix[i][j] = 1; generateMatrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; long long count = 0; generateMatrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a 1 in the matrix is isolated bool isIsolated(int matrix[N][N], int i, int j) { // Check the four cardinal directions if (i > 0 && matrix[i-1][j] == 1) return false; // up if (i < N-1 && matrix[i+1][j] == 1) return false; // down if (j > 0 && matrix[i][j-1] == 1) return false; // left if (j < N-1 && matrix[i][j+1] == 1) return false; // right return true; } // Function to check if the matrix is unholy bool isUnholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1 && isIsolated(matrix, i, j)) { return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generateMatrices(int matrix[N][N], int pos, long long *count) { if (pos == N * N) { if (isUnholy(matrix)) { (*count)++; } return; } int i = pos / N; int j = pos % N; // Set current position to 0 and recurse matrix[i][j] = 0; generateMatrices(matrix, pos + 1, count); // Set current position to 1 and recurse matrix[i][j] = 1; generateMatrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; long long count = 0; generateMatrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a 1 in the matrix is isolated bool isIsolated(int matrix[N][N], int i, int j) { // Check the four cardinal directions if (i > 0 && matrix[i-1][j] == 1) return false; // up if (i < N-1 && matrix[i+1][j] == 1) return false; // down if (j > 0 && matrix[i][j-1] == 1) return false; // left if (j < N-1 && matrix[i][j+1] == 1) return false; // right return true; } // Function to check if the matrix is unholy bool isUnholy(int matrix[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (matrix[i][j] == 1 && isIsolated(matrix, i, j)) { return false; } } } return true; } // Recursive function to generate all possible 8x8 binary matrices void generateMatrices(int matrix[N][N], int pos, long long *count) { if (pos == N * N) { if (isUnholy(matrix)) { (*count)++; } return; } int i = pos / N; int j = pos % N; // Set current position to 0 and recurse matrix[i][j] = 0; generateMatrices(matrix, pos + 1, count); // Set current position to 1 and recurse matrix[i][j] = 1; generateMatrices(matrix, pos + 1, count); } int main() { int matrix[N][N] = {0}; long long count = 0; generateMatrices(matrix, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Timeout: function took too long to complete
Testing if the previous output contains the string 1121231537486377866
: False
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
To count the total number of unholy 8x8 matrices, you need to generate all possible 8x8 binary matrices and check whether each matrix is unholy. Given the sheer number of possible matrices (2^(8*8) = 2^64), it's not feasible to brute force this problem directly. Instead, you can use a recursive approach with backtracking to efficiently generate and count only the valid unholy matrices. Below is a C program that implements this approach:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a cell (i, j) in the matrix mat is an isolated 1 bool isIsolated(int mat[N][N], int i, int j) { int directions[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; for (int d = 0; d < 4; d++) { int ni = i + directions[d][0]; int nj = j + directions[d][1]; if (ni >= 0 && ni < N && nj >= 0 && nj < N && mat[ni][nj] == 1) { return false; } } return true; } // Function to check if the entire matrix mat is unholy bool isUnholy(int mat[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (mat[i][j] == 1 && isIsolated(mat, i, j)) { return false; } } } return true; } // Recursive function to generate all binary 8x8 matrices and count unholy matrices void generateMatrices(int mat[N][N], int i, int j, long long *count) { if (i == N) { if (isUnholy(mat)) { (*count)++; } return; } int next_i, next_j; if (j == N - 1) { next_i = i + 1; next_j = 0; } else { next_i = i; next_j = j + 1; } // 0 case mat[i][j] = 0; generateMatrices(mat, next_i, next_j, count); // 1 case mat[i][j] = 1; generateMatrices(mat, next_i, next_j, count); } int main() { int mat[N][N] = {0}; long long count = 0; generateMatrices(mat, 0, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a cell (i, j) in the matrix mat is an isolated 1 bool isIsolated(int mat[N][N], int i, int j) { int directions[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; for (int d = 0; d < 4; d++) { int ni = i + directions[d][0]; int nj = j + directions[d][1]; if (ni >= 0 && ni < N && nj >= 0 && nj < N && mat[ni][nj] == 1) { return false; } } return true; } // Function to check if the entire matrix mat is unholy bool isUnholy(int mat[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (mat[i][j] == 1 && isIsolated(mat, i, j)) { return false; } } } return true; } // Recursive function to generate all binary 8x8 matrices and count unholy matrices void generateMatrices(int mat[N][N], int i, int j, long long *count) { if (i == N) { if (isUnholy(mat)) { (*count)++; } return; } int next_i, next_j; if (j == N - 1) { next_i = i + 1; next_j = 0; } else { next_i = i; next_j = j + 1; } // 0 case mat[i][j] = 0; generateMatrices(mat, next_i, next_j, count); // 1 case mat[i][j] = 1; generateMatrices(mat, next_i, next_j, count); } int main() { int mat[N][N] = {0}; long long count = 0; generateMatrices(mat, 0, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a cell (i, j) in the matrix mat is an isolated 1 bool isIsolated(int mat[N][N], int i, int j) { int directions[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; for (int d = 0; d < 4; d++) { int ni = i + directions[d][0]; int nj = j + directions[d][1]; if (ni >= 0 && ni < N && nj >= 0 && nj < N && mat[ni][nj] == 1) { return false; } } return true; } // Function to check if the entire matrix mat is unholy bool isUnholy(int mat[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (mat[i][j] == 1 && isIsolated(mat, i, j)) { return false; } } } return true; } // Recursive function to generate all binary 8x8 matrices and count unholy matrices void generateMatrices(int mat[N][N], int i, int j, long long *count) { if (i == N) { if (isUnholy(mat)) { (*count)++; } return; } int next_i, next_j; if (j == N - 1) { next_i = i + 1; next_j = 0; } else { next_i = i; next_j = j + 1; } // 0 case mat[i][j] = 0; generateMatrices(mat, next_i, next_j, count); // 1 case mat[i][j] = 1; generateMatrices(mat, next_i, next_j, count); } int main() { int mat[N][N] = {0}; long long count = 0; generateMatrices(mat, 0, 0, &count); printf("Total number of unholy 8x8 matrices: %lld\n", count); return 0; } |
Timeout: function took too long to complete
Testing if the previous output contains the string 1121231537486377866
: False
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
To solve the problem of counting the total number of 8x8 binary matrices that are 'unholy', we need to ensure that every 1 in the matrix has at least one other 1 in one of the four direct cardinal directions (up, down, left, or right). Here's a step-by-step breakdown of how we can implement this in C: 1. Generate all possible 8x8 binary matrices. 2. Check each matrix to see if it is 'unholy'. 3. Count the matrices that meet the 'unholy' criteria. However, due to the astronomical number of possible 8x8 matrices (2^(8*8) = 2^64), a brute-force approach is computationally infeasible. Thus, we need a more efficient strategy, which may involve combinatorial analysis or dynamic programming techniques. For now, we can start with a naive approach to illustrate the process. This solution won't be efficient enough for practical execution but will demonstrate the logic.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { if (matrix[i][j] == 1) { bool has_neighbor = false; if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // up if (i < N-1 && matrix[i+1][j] == 1) has_neighbor = true; // down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // left if (j < N-1 && matrix[i][j+1] == 1) has_neighbor = true; // right if (!has_neighbor) { return false; // Found an isolated 1 } } } } return true; // No isolated 1s found } // Function to generate all 8x8 matrices and count 'unholy' ones void count_unholy_matrices() { unsigned long long unholy_count = 0; unsigned long long total_matrices = 1ULL << (N * N); // 2^(8*8) int matrix[N][N]; for (unsigned long long mask = 0; mask < total_matrices; ++mask) { // Generate matrix from mask for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { matrix[i][j] = (mask >> (i * N + j)) & 1; } } // Check if the matrix is 'unholy' if (is_unholy(matrix)) { ++unholy_count; } } printf("Total number of unholy 8x8 matrices: %llu\n", unholy_count); } int main() { count_unholy_matrices(); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { if (matrix[i][j] == 1) { bool has_neighbor = false; if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // up if (i < N-1 && matrix[i+1][j] == 1) has_neighbor = true; // down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // left if (j < N-1 && matrix[i][j+1] == 1) has_neighbor = true; // right if (!has_neighbor) { return false; // Found an isolated 1 } } } } return true; // No isolated 1s found } // Function to generate all 8x8 matrices and count 'unholy' ones void count_unholy_matrices() { unsigned long long unholy_count = 0; unsigned long long total_matrices = 1ULL << (N * N); // 2^(8*8) int matrix[N][N]; for (unsigned long long mask = 0; mask < total_matrices; ++mask) { // Generate matrix from mask for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { matrix[i][j] = (mask >> (i * N + j)) & 1; } } // Check if the matrix is 'unholy' if (is_unholy(matrix)) { ++unholy_count; } } printf("Total number of unholy 8x8 matrices: %llu\n", unholy_count); } int main() { count_unholy_matrices(); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #include <stdio.h> #include <stdbool.h> #define N 8 // Function to check if a matrix is 'unholy' bool is_unholy(int matrix[N][N]) { for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { if (matrix[i][j] == 1) { bool has_neighbor = false; if (i > 0 && matrix[i-1][j] == 1) has_neighbor = true; // up if (i < N-1 && matrix[i+1][j] == 1) has_neighbor = true; // down if (j > 0 && matrix[i][j-1] == 1) has_neighbor = true; // left if (j < N-1 && matrix[i][j+1] == 1) has_neighbor = true; // right if (!has_neighbor) { return false; // Found an isolated 1 } } } } return true; // No isolated 1s found } // Function to generate all 8x8 matrices and count 'unholy' ones void count_unholy_matrices() { unsigned long long unholy_count = 0; unsigned long long total_matrices = 1ULL << (N * N); // 2^(8*8) int matrix[N][N]; for (unsigned long long mask = 0; mask < total_matrices; ++mask) { // Generate matrix from mask for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { matrix[i][j] = (mask >> (i * N + j)) & 1; } } // Check if the matrix is 'unholy' if (is_unholy(matrix)) { ++unholy_count; } } printf("Total number of unholy 8x8 matrices: %llu\n", unholy_count); } int main() { count_unholy_matrices(); return 0; } |
Total number of unholy 8x8 matrices: 0
main.c: In function 'count_unholy_matrices':
main.c:30:46: warning: left shift count >= width of type [-Wshift-count-overflow]
30 | unsigned long long total_matrices = 1ULL << (N * N); // 2^(8*8)
| ^~
Testing if the previous output contains the string 1121231537486377866
: False