A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
A binary 8x8 matrix is 'unholy' if there are no isolated 1s. A 1 is isolated if there isn't another 1 in any of the 4 direct cardinal directions. Write a C program that counts the total number of unholy 8x8 matricies.
Okay, let's break this down. 1. **Problem Definition:** We need to count 8x8 binary matrices where no '1' is isolated. A '1' is isolated if all its direct neighbors (up, down, left, right) are '0'. 2. **Matrix Size:** 8x8 = 64 cells. 3. **Brute Force:** Trying all 2^64 possibilities is computationally infeasible (would take centuries). 4. **Dynamic Programming (Profile DP / Row by Row):** This seems like the most viable approach. We can build the matrix row by row, keeping track of the valid configurations. * **State:** Let `dp[i][mask]` be the number of ways to fill the first `i` rows such that row `i-1` has the configuration given by `mask` (an 8-bit integer where the k-th bit represents the cell `(i-1, k)`), and all constraints *up to row i-1* are satisfied. * **Dimension:** The DP table will be `dp[N+1][1 << N]`, where `N=8`. We need `N+1` rows to handle the state *after* processing the Nth row. * **Base Case:** Before filling any rows (state `i=0`), there's one way to have an empty prefix, represented by the previous row being all zeros (`mask = 0`). So, `dp[0][0] = 1`. All other `dp[0][mask]` are 0. * **Transition:** To calculate `dp[i+1][current_mask]`, we iterate through all possible `prev_mask` for row `i-1`. If `dp[i][prev_mask]` is non-zero (meaning `prev_mask` was reachable), we check if transitioning from `prev_mask` (row `i-1`) to `current_mask` (row `i`) is valid. * **Validity Check (`check(prev_mask, current_mask)`):** This is the crucial part. When considering placing `current_mask` at row `i`, we must ensure that all the '1's in `prev_mask` (row `i-1`) are *not* isolated. A '1' at `(i-1, k)` in `prev_mask` is *not* isolated if it has a neighbor: * Horizontally left: `(i-1, k-1)` is '1' (i.e., bit `k-1` in `prev_mask` is 1). * Horizontally right: `(i-1, k+1)` is '1' (i.e., bit `k+1` in `prev_mask` is 1). * Vertically down: `(i, k)` is '1' (i.e., bit `k` in `current_mask` is 1). If *any* '1' in `prev_mask` fails this check (has no neighbors in `prev_mask` or `current_mask`), the transition is invalid. * **Accumulation:** If the transition `(prev_mask, current_mask)` is valid, we add the number of ways to reach `prev_mask` to the count for `current_mask`: `dp[i+1][current_mask] += dp[i][prev_mask]`. * **Final Result:** After filling all `N` rows (i.e., calculating up to `dp[N][mask]`), we need a final check. The state `dp[N][mask]` represents valid fillings up to row `N-1`, with row `N-1` being `mask`. We need to ensure the '1's in the *last* row (`mask`) are also not isolated. We can do this by applying the same `check` function, imagining a hypothetical next row `N` consisting of all zeros: `check(mask, 0)`. The total count is the sum of `dp[N][mask]` for all `mask` that satisfy `check(mask, 0)`. 5. **Data Types:** The number of matrices can be very large, potentially exceeding 2^32. We must use a 64-bit unsigned integer type, like `unsigned long long` in C. Here's the C program implementing this Profile DP approach:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #include <stdio.h> #include <stdlib.h> // For calloc #include <stdbool.h> // For bool type (optional, can use int) #define N 8 #define NUM_MASKS (1 << N) // 2^N = 256 // Type for potentially large counts typedef unsigned long long count_t; // DP table: dp[row_index + 1][mask_of_row_index] // Stores the number of ways to fill rows 0 to row_index // such that row_index has the configuration 'mask_of_row_index' // and all constraints involving rows 0 to row_index are met. count_t dp[N + 1][NUM_MASKS]; // Function to check if all 1s in mask1 (representing row r) have a neighbor // either horizontally within mask1 or vertically in mask2 (representing row r+1). // Note: This checks the constraints *for* mask1, using mask2 as the 'downward' context. bool check(int mask1, int mask2) { for (int j = 0; j < N; ++j) { // Check if the j-th bit is 1 in mask1 if ((mask1 >> j) & 1) { bool has_neighbor = false; // Check left neighbor (horizontal) if (j > 0 && ((mask1 >> (j - 1)) & 1)) { has_neighbor = true; } // Check right neighbor (horizontal) if (!has_neighbor && j < N - 1 && ((mask1 >> (j + 1)) & 1)) { has_neighbor = true; } // Check down neighbor (vertical) if (!has_neighbor && ((mask2 >> j) & 1)) { has_neighbor = true; } // If this 1 in mask1 has no neighbors, the configuration is invalid if (!has_neighbor) { return false; } } } // All 1s in mask1 had at least one neighbor return true; } int main() { // Initialize DP table to 0 // Using calloc implicitly does this, but being explicit is fine too. // for (int i = 0; i <= N; ++i) { // for (int j = 0; j < NUM_MASKS; ++j) { // dp[i][j] = 0; // } // } // Base case: Before row 0, there's 1 way to have the "previous" row be all 0s. // dp[0][mask] represents the state *before* processing row 0. // The only valid state before starting is having no rows, which we can // think of as the state after an imaginary row -1 which was all zeros. dp[0][0] = 1; // Iterate through rows to fill (from row 0 to row N-1) for (int i = 0; i < N; ++i) { // i is the index of the row we are about to fill (0 to N-1) // Iterate through all possible masks for the previous row (row i-1) for (int prev_mask = 0; prev_mask < NUM_MASKS; ++prev_mask) { // If there are no ways to reach this prev_mask state, skip if (dp[i][prev_mask] == 0) { continue; } // Iterate through all possible masks for the current row (row i) for (int current_mask = 0; current_mask < NUM_MASKS; ++current_mask) { // Check if placing current_mask at row i satisfies the constraints // for all the 1s in prev_mask (row i-1). if (check(prev_mask, current_mask)) { // If valid, add the number of ways to reach prev_mask // to the number of ways to reach current_mask at the next step. // dp[i+1][current_mask] accumulates counts for valid ways to fill up to row i // ending with current_mask. dp[i + 1][current_mask] += dp[i][prev_mask]; } } } } // Calculate the final result count_t total_unholy_matrices = 0; // Sum up the counts for the last row (row N-1), ensuring the 1s in the // last row itself are not isolated. We check this by imagining a final // row N of all zeros below it. for (int final_mask = 0; final_mask < NUM_MASKS; ++final_mask) { // dp[N][final_mask] holds the count of valid matrices up to row N-1 // where row N-1 is final_mask. // We need to check if this final_mask satisfies the condition. if (check(final_mask, 0)) { // Check final row against a hypothetical next row of 0s total_unholy_matrices += dp[N][final_mask]; } } printf("Total number of unholy 8x8 matrices: %llu\n", total_unholy_matrices); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #include <stdio.h> #include <stdlib.h> // For calloc #include <stdbool.h> // For bool type (optional, can use int) #define N 8 #define NUM_MASKS (1 << N) // 2^N = 256 // Type for potentially large counts typedef unsigned long long count_t; // DP table: dp[row_index + 1][mask_of_row_index] // Stores the number of ways to fill rows 0 to row_index // such that row_index has the configuration 'mask_of_row_index' // and all constraints involving rows 0 to row_index are met. count_t dp[N + 1][NUM_MASKS]; // Function to check if all 1s in mask1 (representing row r) have a neighbor // either horizontally within mask1 or vertically in mask2 (representing row r+1). // Note: This checks the constraints *for* mask1, using mask2 as the 'downward' context. bool check(int mask1, int mask2) { for (int j = 0; j < N; ++j) { // Check if the j-th bit is 1 in mask1 if ((mask1 >> j) & 1) { bool has_neighbor = false; // Check left neighbor (horizontal) if (j > 0 && ((mask1 >> (j - 1)) & 1)) { has_neighbor = true; } // Check right neighbor (horizontal) if (!has_neighbor && j < N - 1 && ((mask1 >> (j + 1)) & 1)) { has_neighbor = true; } // Check down neighbor (vertical) if (!has_neighbor && ((mask2 >> j) & 1)) { has_neighbor = true; } // If this 1 in mask1 has no neighbors, the configuration is invalid if (!has_neighbor) { return false; } } } // All 1s in mask1 had at least one neighbor return true; } int main() { // Initialize DP table to 0 // Using calloc implicitly does this, but being explicit is fine too. // for (int i = 0; i <= N; ++i) { // for (int j = 0; j < NUM_MASKS; ++j) { // dp[i][j] = 0; // } // } // Base case: Before row 0, there's 1 way to have the "previous" row be all 0s. // dp[0][mask] represents the state *before* processing row 0. // The only valid state before starting is having no rows, which we can // think of as the state after an imaginary row -1 which was all zeros. dp[0][0] = 1; // Iterate through rows to fill (from row 0 to row N-1) for (int i = 0; i < N; ++i) { // i is the index of the row we are about to fill (0 to N-1) // Iterate through all possible masks for the previous row (row i-1) for (int prev_mask = 0; prev_mask < NUM_MASKS; ++prev_mask) { // If there are no ways to reach this prev_mask state, skip if (dp[i][prev_mask] == 0) { continue; } // Iterate through all possible masks for the current row (row i) for (int current_mask = 0; current_mask < NUM_MASKS; ++current_mask) { // Check if placing current_mask at row i satisfies the constraints // for all the 1s in prev_mask (row i-1). if (check(prev_mask, current_mask)) { // If valid, add the number of ways to reach prev_mask // to the number of ways to reach current_mask at the next step. // dp[i+1][current_mask] accumulates counts for valid ways to fill up to row i // ending with current_mask. dp[i + 1][current_mask] += dp[i][prev_mask]; } } } } // Calculate the final result count_t total_unholy_matrices = 0; // Sum up the counts for the last row (row N-1), ensuring the 1s in the // last row itself are not isolated. We check this by imagining a final // row N of all zeros below it. for (int final_mask = 0; final_mask < NUM_MASKS; ++final_mask) { // dp[N][final_mask] holds the count of valid matrices up to row N-1 // where row N-1 is final_mask. // We need to check if this final_mask satisfies the condition. if (check(final_mask, 0)) { // Check final row against a hypothetical next row of 0s total_unholy_matrices += dp[N][final_mask]; } } printf("Total number of unholy 8x8 matrices: %llu\n", total_unholy_matrices); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #include <stdio.h> #include <stdlib.h> // For calloc #include <stdbool.h> // For bool type (optional, can use int) #define N 8 #define NUM_MASKS (1 << N) // 2^N = 256 // Type for potentially large counts typedef unsigned long long count_t; // DP table: dp[row_index + 1][mask_of_row_index] // Stores the number of ways to fill rows 0 to row_index // such that row_index has the configuration 'mask_of_row_index' // and all constraints involving rows 0 to row_index are met. count_t dp[N + 1][NUM_MASKS]; // Function to check if all 1s in mask1 (representing row r) have a neighbor // either horizontally within mask1 or vertically in mask2 (representing row r+1). // Note: This checks the constraints *for* mask1, using mask2 as the 'downward' context. bool check(int mask1, int mask2) { for (int j = 0; j < N; ++j) { // Check if the j-th bit is 1 in mask1 if ((mask1 >> j) & 1) { bool has_neighbor = false; // Check left neighbor (horizontal) if (j > 0 && ((mask1 >> (j - 1)) & 1)) { has_neighbor = true; } // Check right neighbor (horizontal) if (!has_neighbor && j < N - 1 && ((mask1 >> (j + 1)) & 1)) { has_neighbor = true; } // Check down neighbor (vertical) if (!has_neighbor && ((mask2 >> j) & 1)) { has_neighbor = true; } // If this 1 in mask1 has no neighbors, the configuration is invalid if (!has_neighbor) { return false; } } } // All 1s in mask1 had at least one neighbor return true; } int main() { // Initialize DP table to 0 // Using calloc implicitly does this, but being explicit is fine too. // for (int i = 0; i <= N; ++i) { // for (int j = 0; j < NUM_MASKS; ++j) { // dp[i][j] = 0; // } // } // Base case: Before row 0, there's 1 way to have the "previous" row be all 0s. // dp[0][mask] represents the state *before* processing row 0. // The only valid state before starting is having no rows, which we can // think of as the state after an imaginary row -1 which was all zeros. dp[0][0] = 1; // Iterate through rows to fill (from row 0 to row N-1) for (int i = 0; i < N; ++i) { // i is the index of the row we are about to fill (0 to N-1) // Iterate through all possible masks for the previous row (row i-1) for (int prev_mask = 0; prev_mask < NUM_MASKS; ++prev_mask) { // If there are no ways to reach this prev_mask state, skip if (dp[i][prev_mask] == 0) { continue; } // Iterate through all possible masks for the current row (row i) for (int current_mask = 0; current_mask < NUM_MASKS; ++current_mask) { // Check if placing current_mask at row i satisfies the constraints // for all the 1s in prev_mask (row i-1). if (check(prev_mask, current_mask)) { // If valid, add the number of ways to reach prev_mask // to the number of ways to reach current_mask at the next step. // dp[i+1][current_mask] accumulates counts for valid ways to fill up to row i // ending with current_mask. dp[i + 1][current_mask] += dp[i][prev_mask]; } } } } // Calculate the final result count_t total_unholy_matrices = 0; // Sum up the counts for the last row (row N-1), ensuring the 1s in the // last row itself are not isolated. We check this by imagining a final // row N of all zeros below it. for (int final_mask = 0; final_mask < NUM_MASKS; ++final_mask) { // dp[N][final_mask] holds the count of valid matrices up to row N-1 // where row N-1 is final_mask. // We need to check if this final_mask satisfies the condition. if (check(final_mask, 0)) { // Check final row against a hypothetical next row of 0s total_unholy_matrices += dp[N][final_mask]; } } printf("Total number of unholy 8x8 matrices: %llu\n", total_unholy_matrices); return 0; } |
Total number of unholy 8x8 matrices: 53003772538202116
Testing if the previous output contains the string 1121231537486377866
: False