Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here's how you might convert the given PyTorch code to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax from jax import numpy as jnp from jax import random from jax.experimental import optimizers from jax.experimental.stax import (Dense, Relu, Softmax, serial, fully_connected, train) def init_fun(rng, input_size, hidden_size, output_size): return serial( Dense(hidden_size), Relu, Dense(output_size), Softmax )(random.PRNGKey(0), (input_size,)) def apply_fun(params, inputs): return fully_connected(params, inputs) rng = random.PRNGKey(0) input_size, hidden_size, output_size = 10, 20, 30 params = init_fun(rng, input_size, hidden_size, output_size) x = random.normal(rng, (5, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax from jax import numpy as jnp from jax import random from jax.experimental import optimizers from jax.experimental.stax import (Dense, Relu, Softmax, serial, fully_connected, train) def init_fun(rng, input_size, hidden_size, output_size): return serial( Dense(hidden_size), Relu, Dense(output_size), Softmax )(random.PRNGKey(0), (input_size,)) def apply_fun(params, inputs): return fully_connected(params, inputs) rng = random.PRNGKey(0) input_size, hidden_size, output_size = 10, 20, 30 params = init_fun(rng, input_size, hidden_size, output_size) x = random.normal(rng, (5, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax from jax import numpy as jnp from jax import random from jax.experimental import optimizers from jax.experimental.stax import (Dense, Relu, Softmax, serial, fully_connected, train) def init_fun(rng, input_size, hidden_size, output_size): return serial( Dense(hidden_size), Relu, Dense(output_size), Softmax )(random.PRNGKey(0), (input_size,)) def apply_fun(params, inputs): return fully_connected(params, inputs) rng = random.PRNGKey(0) input_size, hidden_size, output_size = 10, 20, 30 params = init_fun(rng, input_size, hidden_size, output_size) x = random.normal(rng, (5, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 5, in <module>
from jax.experimental import optimizers
ImportError: cannot import name 'optimizers' from 'jax.experimental' (/usr/local/lib/python3.11/dist-packages/jax/experimental/__init__.py)
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here is the equivalent code in JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return softmax(x, axis=1) def initialize_model(): rng = random.PRNGKey(0) model = MLP() params = model.init(rng, jnp.ones((5, 10))) return model, params model, params = initialize_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(jnp.sum(y.flatten(), axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return softmax(x, axis=1) def initialize_model(): rng = random.PRNGKey(0) model = MLP() params = model.init(rng, jnp.ones((5, 10))) return model, params model, params = initialize_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(jnp.sum(y.flatten(), axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return softmax(x, axis=1) def initialize_model(): rng = random.PRNGKey(0) model = MLP() params = model.init(rng, jnp.ones((5, 10))) return model, params model, params = initialize_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(jnp.sum(y.flatten(), axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 6, in <module>
from flax import linen as nn
ModuleNotFoundError: No module named 'flax'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here's how you might convert the given PyTorch code to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from jax.experimental import optimizers from jax.experimental.stax import * def init_fun(rng, input_shape): return serial( Dense(20), Relu, Dense(30), Softmax )(rng, input_shape) def apply_fun(params, inputs): return serial( Dense(20), Relu, Dense(30), Softmax )(params, inputs) input_shape = (10,) rng = random.PRNGKey(0) rng, init_rng = random.split(rng) params = init_fun(init_rng, input_shape) x = random.normal(rng, (5, 10)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from jax.experimental import optimizers from jax.experimental.stax import * def init_fun(rng, input_shape): return serial( Dense(20), Relu, Dense(30), Softmax )(rng, input_shape) def apply_fun(params, inputs): return serial( Dense(20), Relu, Dense(30), Softmax )(params, inputs) input_shape = (10,) rng = random.PRNGKey(0) rng, init_rng = random.split(rng) params = init_fun(init_rng, input_shape) x = random.normal(rng, (5, 10)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from jax.nn import softmax from jax.experimental import optimizers from jax.experimental.stax import * def init_fun(rng, input_shape): return serial( Dense(20), Relu, Dense(30), Softmax )(rng, input_shape) def apply_fun(params, inputs): return serial( Dense(20), Relu, Dense(30), Softmax )(params, inputs) input_shape = (10,) rng = random.PRNGKey(0) rng, init_rng = random.split(rng) params = init_fun(init_rng, input_shape) x = random.normal(rng, (5, 10)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 6, in <module>
from jax.experimental import optimizers
ImportError: cannot import name 'optimizers' from 'jax.experimental' (/usr/local/lib/python3.11/dist-packages/jax/experimental/__init__.py)
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here's how you might convert the given PyTorch code to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import grad, jit, vmap from jax.example_libraries import stax def init_fun(input_size, hidden_size, output_size): return stax.serial( stax.Dense(hidden_size), stax.Relu, stax.Dense(output_size), stax.Softmax ) def apply_fun(params, inputs): return jax.nn.softmax(params, inputs, axis=1) input_size, hidden_size, output_size = 10, 20, 30 rng = jax.random.PRNGKey(0) x = jax.random.normal(rng, (5, input_size)) init_params, apply_fun = init_fun(input_size, hidden_size, output_size) params = init_params(rng, (1, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import grad, jit, vmap from jax.example_libraries import stax def init_fun(input_size, hidden_size, output_size): return stax.serial( stax.Dense(hidden_size), stax.Relu, stax.Dense(output_size), stax.Softmax ) def apply_fun(params, inputs): return jax.nn.softmax(params, inputs, axis=1) input_size, hidden_size, output_size = 10, 20, 30 rng = jax.random.PRNGKey(0) x = jax.random.normal(rng, (5, input_size)) init_params, apply_fun = init_fun(input_size, hidden_size, output_size) params = init_params(rng, (1, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import grad, jit, vmap from jax.example_libraries import stax def init_fun(input_size, hidden_size, output_size): return stax.serial( stax.Dense(hidden_size), stax.Relu, stax.Dense(output_size), stax.Softmax ) def apply_fun(params, inputs): return jax.nn.softmax(params, inputs, axis=1) input_size, hidden_size, output_size = 10, 20, 30 rng = jax.random.PRNGKey(0) x = jax.random.normal(rng, (5, input_size)) init_params, apply_fun = init_fun(input_size, hidden_size, output_size) params = init_params(rng, (1, input_size)) y = apply_fun(params, x) print(list(jnp.sum(y, axis=1))) |
[Array(297.25952, dtype=float32), Array(298.13232, dtype=float32), Array(297.56348, dtype=float32), Array(304.7015, dtype=float32), Array(296.4884, dtype=float32)]
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here's how you can convert the given PyTorch code to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) def create_model(): model = MLP() rng = random.PRNGKey(0) input_shape = (10,) params = model.init(rng, jnp.ones(input_shape)) return model, params model, params = create_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(y.flatten().sum(axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) def create_model(): model = MLP() rng = random.PRNGKey(0) input_shape = (10,) params = model.init(rng, jnp.ones(input_shape)) return model, params model, params = create_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(y.flatten().sum(axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import jax import jax.numpy as jnp from jax import random, grad, jit, vmap from flax import linen as nn class MLP(nn.Module): def setup(self): self.linear1 = nn.Dense(20) self.linear2 = nn.Dense(30) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) def create_model(): model = MLP() rng = random.PRNGKey(0) input_shape = (10,) params = model.init(rng, jnp.ones(input_shape)) return model, params model, params = create_model() x = random.normal(random.PRNGKey(1), (5, 10)) y = model.apply(params, x) print(list(y.flatten().sum(axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 5, in <module>
from flax import linen as nn
ModuleNotFoundError: No module named 'flax'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False