Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

Sure, here's the equivalent JAX code to convert the PyTorch implementation to pure JAX:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import jax.numpy as jnp
from jax import random, nn

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return nn.softmax(x, axis=1)

key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)
x = random.normal(key, (5, 10))
y = model(x)
print(y.flatten().sum())
Here’s a breakdown of the changes made: 1. **Parameters Initialization**: In JAX, we use `random.normal` to initialize weights similarly to PyTorch's default initialization, and we use `jnp.zeros` for biases. 2. **Forward Pass**: The `__call__` method computes the forward pass using matrix multiplication (`jnp.dot`) and bias addition, followed by activation (`nn.relu`) and finally applying the softmax function (`nn.softmax`). 3. **Random Key Management**: JAX requires the use of random keys for generating random numbers, managed using `random.split` to ensure different values for different layers. This code preserves the structure and functionality of the original PyTorch implementation in a JAX-compatible format.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import jax.numpy as jnp
from jax import random, nn

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return nn.softmax(x, axis=1)

key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)
x = random.normal(key, (5, 10))
y = model(x)
print(y.flatten().sum())

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import jax.numpy as jnp
from jax import random, nn

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return nn.softmax(x, axis=1)

key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)
x = random.normal(key, (5, 10))
y = model(x)
print(y.flatten().sum())
And got the output: 5.0

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: False

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: False

Final Answer: False

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: False

Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

To convert the provided PyTorch code to pure JAX, we need to create a similar MLP model and forward pass using JAX's `jax` and `jax.numpy` libraries. Here's the equivalent JAX code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import jax
import jax.numpy as jnp
from jax import random

# Define the MLP class
class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.key, subkey1, subkey2 = random.split(self.key, 3)
        
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(10, 20, 30, key)

# Create random input data
key, subkey = random.split(key)
x = random.normal(subkey, (5, 10))

# Forward pass
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten(), axis=0))
This code does the following: 1. Defines an MLP class with similar structure and functionality to the PyTorch version. 2. Initializes the weights and biases using JAX's random number generation. 3. Implements the forward pass with ReLU activation and softmax output. 4. Generates random input data. 5. Performs the forward pass and prints the sum of the flattened output. Note that JAX doesn't have a built-in module system like PyTorch, so we handle the parameters and operations explicitly.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import jax
import jax.numpy as jnp
from jax import random

# Define the MLP class
class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.key, subkey1, subkey2 = random.split(self.key, 3)
        
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(10, 20, 30, key)

# Create random input data
key, subkey = random.split(key)
x = random.normal(subkey, (5, 10))

# Forward pass
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten(), axis=0))

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import jax
import jax.numpy as jnp
from jax import random

# Define the MLP class
class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.key, subkey1, subkey2 = random.split(self.key, 3)
        
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(10, 20, 30, key)

# Create random input data
key, subkey = random.split(key)
x = random.normal(subkey, (5, 10))

# Forward pass
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten(), axis=0))
And got the output: 5.0

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: False

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: False

Final Answer: False

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: False

Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

To convert the given PyTorch code to JAX, you need to use JAX's functions and classes to build and run the model. JAX doesn't have a built-in neural network library similar to PyTorch's `torch.nn.Module`, so we need to define the layers manually using JAX's operations. Here's what the equivalent JAX code would look like:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import jax
import jax.numpy as jnp
from jax import random

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize random keys
key = random.PRNGKey(0)

# Create model instance
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Get model output
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten()).item())
In this code: - We use `jax.random.normal` to initialize the weights with random numbers. - We define the MLP class with two linear layers and ReLU activation followed by a softmax function for the output. - The `__call__` method performs the forward pass. - We generate random input data using `jax.random.normal`. - Finally, we print the sum of the flattened output tensor. Note that `jax.numpy` functions are used in place of `torch` functions for tensor operations.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import jax
import jax.numpy as jnp
from jax import random

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize random keys
key = random.PRNGKey(0)

# Create model instance
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Get model output
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten()).item())

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import jax
import jax.numpy as jnp
from jax import random

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        k1, k2 = random.split(key)
        self.W1 = random.normal(k1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(k2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return jax.nn.softmax(x, axis=1)

# Initialize random keys
key = random.PRNGKey(0)

# Create model instance
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Get model output
y = model(x)

# Print the sum of the flattened output
print(jnp.sum(y.flatten()).item())
And got the output: 5.0

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: False

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: False

Final Answer: False

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: False

Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

To convert the provided PyTorch code to pure JAX, we need to rewrite the neural network and its operations using JAX constructs. JAX provides low-level operations similar to NumPy but with GPU/TPU acceleration and automatic differentiation. Below is the equivalent JAX code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import jax
import jax.numpy as jnp
from jax import random
from jax.nn import relu, softmax

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        self.key, subkey1, subkey2 = random.split(key, 3)
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)

# Create a random input tensor
x = random.normal(key, (5, 10))

# Get the model output
y = model(x)

# Print the sum of the flattened output tensor
print(y.flatten().sum())
### Explanation: 1. **Initialization**: In JAX, we use `random.split` to create separate random keys for initializing the weights of the layers. `random.normal` is used to initialize the weights with a normal distribution, and `jnp.zeros` initializes the biases to zeros. 2. **Forward Pass**: The forward pass method `__call__` performs the operations using JAX functions. The dense (linear) layers are implemented using `jnp.dot` for matrix multiplication and adding the bias term. Activation functions `relu` and `softmax` are used from `jax.nn`. 3. **Random Input**: A random input tensor `x` is generated using `random.normal`. 4. **Output**: The model output `y` is calculated by passing the input through the model. The sum of the flattened output tensor is printed using `flatten().sum()`. This code provides a direct translation of the PyTorch model to JAX while maintaining the same structure and functionality.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import jax
import jax.numpy as jnp
from jax import random
from jax.nn import relu, softmax

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        self.key, subkey1, subkey2 = random.split(key, 3)
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)

# Create a random input tensor
x = random.normal(key, (5, 10))

# Get the model output
y = model(x)

# Print the sum of the flattened output tensor
print(y.flatten().sum())

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import jax
import jax.numpy as jnp
from jax import random
from jax.nn import relu, softmax

class MLP:
    def __init__(self, key, input_size, hidden_size, output_size):
        self.key, subkey1, subkey2 = random.split(key, 3)
        self.W1 = random.normal(subkey1, (input_size, hidden_size))
        self.b1 = jnp.zeros(hidden_size)
        self.W2 = random.normal(subkey2, (hidden_size, output_size))
        self.b2 = jnp.zeros(output_size)

    def __call__(self, x):
        x = jnp.dot(x, self.W1) + self.b1
        x = relu(x)
        x = jnp.dot(x, self.W2) + self.b2
        return softmax(x, axis=1)

# Initialize the model
key = random.PRNGKey(0)
model = MLP(key, 10, 20, 30)

# Create a random input tensor
x = random.normal(key, (5, 10))

# Get the model output
y = model(x)

# Print the sum of the flattened output tensor
print(y.flatten().sum())
And got the output: 5.0000005

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: False

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: False

Final Answer: False

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: False

Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

To convert the given PyTorch code to pure JAX, we'll need to use JAX's `jax.numpy` for numerical operations and `jax.nn` for neural network functions. JAX does not have a direct equivalent to PyTorch's `torch.nn.Module`, so we'll implement the neural network manually using functions and JAX's array operations. Here's the equivalent JAX code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import jax
import jax.numpy as jnp
from jax import random
import jax.nn

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        
        # Initialize weights and biases
        self.params = self.initialize_params()

    def initialize_params(self):
        key1, key2, key3, key4 = random.split(self.key, 4)
        w1 = random.normal(key1, (self.input_size, self.hidden_size))
        b1 = random.normal(key2, (self.hidden_size,))
        w2 = random.normal(key3, (self.hidden_size, self.output_size))
        b2 = random.normal(key4, (self.output_size,))
        return (w1, b1, w2, b2)

    def __call__(self, x):
        w1, b1, w2, b2 = self.params
        x = jnp.dot(x, w1) + b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, w2) + b2
        return jax.nn.softmax(x, axis=1)

# Set random seed for reproducibility
key = random.PRNGKey(0)

# Define model
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Compute output
y = model(x)

# Print the sum of the elements of the output array
print(jnp.sum(y.flatten()))
Explanation: 1. **Initialization**: We initialize weights and biases for the layers using `jax.random.normal` to generate random values. The `initialize_params` method creates the parameters. 2. **Forward Pass**: The `__call__` method defines the forward pass. It performs matrix multiplication using `jnp.dot`, adds biases, applies ReLU activation using `jax.nn.relu`, and the final softmax using `jax.nn.softmax`. 3. **Random Key**: JAX requires a random key for generating random numbers, which is handled using `jax.random.PRNGKey` and `jax.random.split` for generating consistent random values. Finally, the sum of the elements of the output array is printed using `jnp.sum(y.flatten())`. This should provide similar functionality to the original PyTorch code.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import jax
import jax.numpy as jnp
from jax import random
import jax.nn

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        
        # Initialize weights and biases
        self.params = self.initialize_params()

    def initialize_params(self):
        key1, key2, key3, key4 = random.split(self.key, 4)
        w1 = random.normal(key1, (self.input_size, self.hidden_size))
        b1 = random.normal(key2, (self.hidden_size,))
        w2 = random.normal(key3, (self.hidden_size, self.output_size))
        b2 = random.normal(key4, (self.output_size,))
        return (w1, b1, w2, b2)

    def __call__(self, x):
        w1, b1, w2, b2 = self.params
        x = jnp.dot(x, w1) + b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, w2) + b2
        return jax.nn.softmax(x, axis=1)

# Set random seed for reproducibility
key = random.PRNGKey(0)

# Define model
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Compute output
y = model(x)

# Print the sum of the elements of the output array
print(jnp.sum(y.flatten()))

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import jax
import jax.numpy as jnp
from jax import random
import jax.nn

class MLP:
    def __init__(self, input_size, hidden_size, output_size, key):
        self.key = key
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        
        # Initialize weights and biases
        self.params = self.initialize_params()

    def initialize_params(self):
        key1, key2, key3, key4 = random.split(self.key, 4)
        w1 = random.normal(key1, (self.input_size, self.hidden_size))
        b1 = random.normal(key2, (self.hidden_size,))
        w2 = random.normal(key3, (self.hidden_size, self.output_size))
        b2 = random.normal(key4, (self.output_size,))
        return (w1, b1, w2, b2)

    def __call__(self, x):
        w1, b1, w2, b2 = self.params
        x = jnp.dot(x, w1) + b1
        x = jax.nn.relu(x)
        x = jnp.dot(x, w2) + b2
        return jax.nn.softmax(x, axis=1)

# Set random seed for reproducibility
key = random.PRNGKey(0)

# Define model
model = MLP(10, 20, 30, key)

# Generate random input data
x = random.normal(key, (5, 10))

# Compute output
y = model(x)

# Print the sum of the elements of the output array
print(jnp.sum(y.flatten()))
And got the output: 5.0

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: False

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: False

Final Answer: False

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: False