Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Sure, here's the equivalent JAX code to convert the PyTorch implementation to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import jax.numpy as jnp from jax import random, nn class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return nn.softmax(x, axis=1) key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) x = random.normal(key, (5, 10)) y = model(x) print(y.flatten().sum()) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import jax.numpy as jnp from jax import random, nn class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return nn.softmax(x, axis=1) key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) x = random.normal(key, (5, 10)) y = model(x) print(y.flatten().sum()) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import jax.numpy as jnp from jax import random, nn class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return nn.softmax(x, axis=1) key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) x = random.normal(key, (5, 10)) y = model(x) print(y.flatten().sum()) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
To convert the provided PyTorch code to pure JAX, we need to create a similar MLP model and forward pass using JAX's `jax` and `jax.numpy` libraries. Here's the equivalent JAX code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random # Define the MLP class class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.key, subkey1, subkey2 = random.split(self.key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create random input data key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten(), axis=0)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random # Define the MLP class class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.key, subkey1, subkey2 = random.split(self.key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create random input data key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten(), axis=0)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random # Define the MLP class class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.key, subkey1, subkey2 = random.split(self.key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create random input data key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten(), axis=0)) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
To convert the given PyTorch code to JAX, you need to use JAX's functions and classes to build and run the model. JAX doesn't have a built-in neural network library similar to PyTorch's `torch.nn.Module`, so we need to define the layers manually using JAX's operations. Here's what the equivalent JAX code would look like:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size, key): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize random keys key = random.PRNGKey(0) # Create model instance model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Get model output y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten()).item()) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size, key): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize random keys key = random.PRNGKey(0) # Create model instance model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Get model output y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten()).item()) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size, key): k1, k2 = random.split(key) self.W1 = random.normal(k1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(k2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.W2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize random keys key = random.PRNGKey(0) # Create model instance model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Get model output y = model(x) # Print the sum of the flattened output print(jnp.sum(y.flatten()).item()) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
To convert the provided PyTorch code to pure JAX, we need to rewrite the neural network and its operations using JAX constructs. JAX provides low-level operations similar to NumPy but with GPU/TPU acceleration and automatic differentiation. Below is the equivalent JAX code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import jax import jax.numpy as jnp from jax import random from jax.nn import relu, softmax class MLP: def __init__(self, key, input_size, hidden_size, output_size): self.key, subkey1, subkey2 = random.split(key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = relu(x) x = jnp.dot(x, self.W2) + self.b2 return softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create a random input tensor x = random.normal(key, (5, 10)) # Get the model output y = model(x) # Print the sum of the flattened output tensor print(y.flatten().sum()) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import jax import jax.numpy as jnp from jax import random from jax.nn import relu, softmax class MLP: def __init__(self, key, input_size, hidden_size, output_size): self.key, subkey1, subkey2 = random.split(key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = relu(x) x = jnp.dot(x, self.W2) + self.b2 return softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create a random input tensor x = random.normal(key, (5, 10)) # Get the model output y = model(x) # Print the sum of the flattened output tensor print(y.flatten().sum()) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import jax import jax.numpy as jnp from jax import random from jax.nn import relu, softmax class MLP: def __init__(self, key, input_size, hidden_size, output_size): self.key, subkey1, subkey2 = random.split(key, 3) self.W1 = random.normal(subkey1, (input_size, hidden_size)) self.b1 = jnp.zeros(hidden_size) self.W2 = random.normal(subkey2, (hidden_size, output_size)) self.b2 = jnp.zeros(output_size) def __call__(self, x): x = jnp.dot(x, self.W1) + self.b1 x = relu(x) x = jnp.dot(x, self.W2) + self.b2 return softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create a random input tensor x = random.normal(key, (5, 10)) # Get the model output y = model(x) # Print the sum of the flattened output tensor print(y.flatten().sum()) |
5.0000005
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
To convert the given PyTorch code to pure JAX, we'll need to use JAX's `jax.numpy` for numerical operations and `jax.nn` for neural network functions. JAX does not have a direct equivalent to PyTorch's `torch.nn.Module`, so we'll implement the neural network manually using functions and JAX's array operations. Here's the equivalent JAX code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random import jax.nn class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # Initialize weights and biases self.params = self.initialize_params() def initialize_params(self): key1, key2, key3, key4 = random.split(self.key, 4) w1 = random.normal(key1, (self.input_size, self.hidden_size)) b1 = random.normal(key2, (self.hidden_size,)) w2 = random.normal(key3, (self.hidden_size, self.output_size)) b2 = random.normal(key4, (self.output_size,)) return (w1, b1, w2, b2) def __call__(self, x): w1, b1, w2, b2 = self.params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) # Set random seed for reproducibility key = random.PRNGKey(0) # Define model model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Compute output y = model(x) # Print the sum of the elements of the output array print(jnp.sum(y.flatten())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random import jax.nn class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # Initialize weights and biases self.params = self.initialize_params() def initialize_params(self): key1, key2, key3, key4 = random.split(self.key, 4) w1 = random.normal(key1, (self.input_size, self.hidden_size)) b1 = random.normal(key2, (self.hidden_size,)) w2 = random.normal(key3, (self.hidden_size, self.output_size)) b2 = random.normal(key4, (self.output_size,)) return (w1, b1, w2, b2) def __call__(self, x): w1, b1, w2, b2 = self.params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) # Set random seed for reproducibility key = random.PRNGKey(0) # Define model model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Compute output y = model(x) # Print the sum of the elements of the output array print(jnp.sum(y.flatten())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random import jax.nn class MLP: def __init__(self, input_size, hidden_size, output_size, key): self.key = key self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # Initialize weights and biases self.params = self.initialize_params() def initialize_params(self): key1, key2, key3, key4 = random.split(self.key, 4) w1 = random.normal(key1, (self.input_size, self.hidden_size)) b1 = random.normal(key2, (self.hidden_size,)) w2 = random.normal(key3, (self.hidden_size, self.output_size)) b2 = random.normal(key4, (self.output_size,)) return (w1, b1, w2, b2) def __call__(self, x): w1, b1, w2, b2 = self.params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) # Set random seed for reproducibility key = random.PRNGKey(0) # Define model model = MLP(10, 20, 30, key) # Generate random input data x = random.normal(key, (5, 10)) # Compute output y = model(x) # Print the sum of the elements of the output array print(jnp.sum(y.flatten())) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False