Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def __call__(self, x): def relu(x): return jnp.maximum(0, x) x = jnp.dot(x, self.params['linear1']) + self.params['bias1'] x = relu(x) x = jnp.dot(x, self.params['linear2']) + self.params['bias2'] return jax.nn.softmax(x) model = MLP(10, 20, 30) x = jnp.random.randn(5, 10) y = model(x) print(list(y.flatten().sum(axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def __call__(self, x): def relu(x): return jnp.maximum(0, x) x = jnp.dot(x, self.params['linear1']) + self.params['bias1'] x = relu(x) x = jnp.dot(x, self.params['linear2']) + self.params['bias2'] return jax.nn.softmax(x) model = MLP(10, 20, 30) x = jnp.random.randn(5, 10) y = model(x) print(list(y.flatten().sum(axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def __call__(self, x): def relu(x): return jnp.maximum(0, x) x = jnp.dot(x, self.params['linear1']) + self.params['bias1'] x = relu(x) x = jnp.dot(x, self.params['linear2']) + self.params['bias2'] return jax.nn.softmax(x) model = MLP(10, 20, 30) x = jnp.random.randn(5, 10) y = model(x) print(list(y.flatten().sum(axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 24, in <module>
x = jnp.random.randn(5, 10)
^^^^^^^^^^
AttributeError: module 'jax.numpy' has no attribute 'random'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.weights = { 'linear1': jax.random.normal(self.params['linear1'], (input_size, hidden_size)), 'linear2': jax.random.normal(self.params['linear2'], (hidden_size, output_size)) } def __call__(self, x): x = jnp.dot(x, self.weights['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.weights['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) x = jax.random.normal(key, (5, 10)) y = model(x) print(jnp.sum(y.flatten(), axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.weights = { 'linear1': jax.random.normal(self.params['linear1'], (input_size, hidden_size)), 'linear2': jax.random.normal(self.params['linear2'], (hidden_size, output_size)) } def __call__(self, x): x = jnp.dot(x, self.weights['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.weights['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) x = jax.random.normal(key, (5, 10)) y = model(x) print(jnp.sum(y.flatten(), axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.weights = { 'linear1': jax.random.normal(self.params['linear1'], (input_size, hidden_size)), 'linear2': jax.random.normal(self.params['linear2'], (hidden_size, output_size)) } def __call__(self, x): x = jnp.dot(x, self.weights['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.weights['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) x = jax.random.normal(key, (5, 10)) y = model(x) print(jnp.sum(y.flatten(), axis=1)) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> print(jnp.sum(y.flatten(), axis=1)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 226, in sum return _reduce_sum(a, axis=_ensure_optional_axes(axis), dtype=dtype, out=out, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 216, in _reduce_sum return _reduction(a, "sum", np.sum, lax.add, 0, preproc=_cast_to_numeric, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 96, in _reduction pos_dims, dims = _reduction_dims(a, axis) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in _reduction_dims canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in <genexpr> canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in _canonicalize_axis_allow_named return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in <lambda> return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: axis 1 is out of bounds for array of dimension 1</p> <hr /> <p>For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these. |
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size def init(self, key): key, key1, key2 = jax.random.split(key, 3) w1 = jax.random.normal(key1, (self.input_size, self.hidden_size)) b1 = jax.random.normal(key2, (self.hidden_size,)) key, key1, key2 = jax.random.split(key, 3) w2 = jax.random.normal(key1, (self.hidden_size, self.output_size)) b2 = jax.random.normal(key2, (self.output_size,)) self.params = { 'linear1': (w1, b1), 'linear2': (w2, b2) } def forward(self, params, x): w1, b1 = params['linear1'] w2, b2 = params['linear2'] x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) model.init(key) x = jax.random.normal(key, (5, 10)) params = model.params y = model.forward(params, x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size def init(self, key): key, key1, key2 = jax.random.split(key, 3) w1 = jax.random.normal(key1, (self.input_size, self.hidden_size)) b1 = jax.random.normal(key2, (self.hidden_size,)) key, key1, key2 = jax.random.split(key, 3) w2 = jax.random.normal(key1, (self.hidden_size, self.output_size)) b2 = jax.random.normal(key2, (self.output_size,)) self.params = { 'linear1': (w1, b1), 'linear2': (w2, b2) } def forward(self, params, x): w1, b1 = params['linear1'] w2, b2 = params['linear2'] x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) model.init(key) x = jax.random.normal(key, (5, 10)) params = model.params y = model.forward(params, x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size def init(self, key): key, key1, key2 = jax.random.split(key, 3) w1 = jax.random.normal(key1, (self.input_size, self.hidden_size)) b1 = jax.random.normal(key2, (self.hidden_size,)) key, key1, key2 = jax.random.split(key, 3) w2 = jax.random.normal(key1, (self.hidden_size, self.output_size)) b2 = jax.random.normal(key2, (self.output_size,)) self.params = { 'linear1': (w1, b1), 'linear2': (w2, b2) } def forward(self, params, x): w1, b1 = params['linear1'] w2, b2 = params['linear2'] x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(0) model.init(key) x = jax.random.normal(key, (5, 10)) params = model.params y = model.forward(params, x) print(list(jnp.sum(y, axis=1))) |
[Array(0.9999998, dtype=float32), Array(1., dtype=float32), Array(1.0000001, dtype=float32), Array(0.9999999, dtype=float32), Array(1., dtype=float32)]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: True
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def forward(self, params, x): linear1 = jnp.dot(x, params['linear1']) + params['bias1'] relu = jax.nn.relu(linear1) linear2 = jnp.dot(relu, params['linear2']) + params['bias2'] return jax.nn.softmax(linear2, axis=1) model = MLP(10, 20, 30) key = random.PRNGKey(0) params = model.params x = random.normal(key, (5, 10)) y = model.forward(params, x) print(list(y.flatten().sum(axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def forward(self, params, x): linear1 = jnp.dot(x, params['linear1']) + params['bias1'] relu = jax.nn.relu(linear1) linear2 = jnp.dot(relu, params['linear2']) + params['bias2'] return jax.nn.softmax(linear2, axis=1) model = MLP(10, 20, 30) key = random.PRNGKey(0) params = model.params x = random.normal(key, (5, 10)) y = model.forward(params, x) print(list(y.flatten().sum(axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import jax import jax.numpy as jnp from jax import random class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jnp.zeros((input_size, hidden_size)), 'bias1': jnp.zeros((hidden_size,)), 'linear2': jnp.zeros((hidden_size, output_size)), 'bias2': jnp.zeros((output_size,)) } def forward(self, params, x): linear1 = jnp.dot(x, params['linear1']) + params['bias1'] relu = jax.nn.relu(linear1) linear2 = jnp.dot(relu, params['linear2']) + params['bias2'] return jax.nn.softmax(linear2, axis=1) model = MLP(10, 20, 30) key = random.PRNGKey(0) params = model.params x = random.normal(key, (5, 10)) y = model.forward(params, x) print(list(y.flatten().sum(axis=1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Traceback (most recent call last): File "/usr/src/app/main.py", line 26, in <module> print(list(y.flatten().sum(axis=1))) ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 226, in sum return _reduce_sum(a, axis=_ensure_optional_axes(axis), dtype=dtype, out=out, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 216, in _reduce_sum return _reduction(a, "sum", np.sum, lax.add, 0, preproc=_cast_to_numeric, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 96, in _reduction pos_dims, dims = _reduction_dims(a, axis) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in _reduction_dims canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in <genexpr> canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in _canonicalize_axis_allow_named return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in <lambda> return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: axis 1 is out of bounds for array of dimension 1</p> <hr /> <p>For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these. |
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.params['linear1'] = jax.random.normal(self.params['linear1'], (hidden_size, input_size)) self.params['linear2'] = jax.random.normal(self.params['linear2'], (output_size, hidden_size)) def __call__(self, x): x = jnp.dot(self.params['linear1'], x) x = jax.nn.relu(x) x = jnp.dot(self.params['linear2'], x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(2) x = jax.random.normal(key, (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.params['linear1'] = jax.random.normal(self.params['linear1'], (hidden_size, input_size)) self.params['linear2'] = jax.random.normal(self.params['linear2'], (output_size, hidden_size)) def __call__(self, x): x = jnp.dot(self.params['linear1'], x) x = jax.nn.relu(x) x = jnp.dot(self.params['linear2'], x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(2) x = jax.random.normal(key, (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = { 'linear1': jax.random.PRNGKey(0), 'linear2': jax.random.PRNGKey(1) } self.params['linear1'], self.params['linear2'] = jax.random.split(self.params['linear1']) self.params['linear1'] = jax.random.normal(self.params['linear1'], (hidden_size, input_size)) self.params['linear2'] = jax.random.normal(self.params['linear2'], (output_size, hidden_size)) def __call__(self, x): x = jnp.dot(self.params['linear1'], x) x = jax.nn.relu(x) x = jnp.dot(self.params['linear2'], x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) key = jax.random.PRNGKey(2) x = jax.random.normal(key, (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 | Traceback (most recent call last): File "/usr/src/app/main.py", line 24, in <module> y = model(x) ^^^^^^^^ File "/usr/src/app/main.py", line 16, in <strong>call</strong> x = jnp.dot(self.params['linear1'], x) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/lax_numpy.py", line 3326, in dot result = lax.dot_general(a, b, dimension_numbers=(contract_dims, batch_dims), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: dot_general requires contracting dimensions to have the same shape, got (10,) and (5,).</p> <hr /> <p>For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these. |
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False