Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import jax import jax.numpy as jnp def mlp(input_size, hidden_size, output_size): params = { 'linear1': jax.nn.initializers.he_normal()((input_size, hidden_size)), 'linear2': jax.nn.initializers.he_normal()((hidden_size, output_size)), } def apply(params, x): x = jnp.dot(x, params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, params['linear2']) return jax.nn.softmax(x, axis=1) return params, apply model, apply = mlp(10, 20, 30) x = jnp.array(jnp.random.randn(5, 10)) y = apply(model, x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import jax import jax.numpy as jnp def mlp(input_size, hidden_size, output_size): params = { 'linear1': jax.nn.initializers.he_normal()((input_size, hidden_size)), 'linear2': jax.nn.initializers.he_normal()((hidden_size, output_size)), } def apply(params, x): x = jnp.dot(x, params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, params['linear2']) return jax.nn.softmax(x, axis=1) return params, apply model, apply = mlp(10, 20, 30) x = jnp.array(jnp.random.randn(5, 10)) y = apply(model, x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import jax import jax.numpy as jnp def mlp(input_size, hidden_size, output_size): params = { 'linear1': jax.nn.initializers.he_normal()((input_size, hidden_size)), 'linear2': jax.nn.initializers.he_normal()((hidden_size, output_size)), } def apply(params, x): x = jnp.dot(x, params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, params['linear2']) return jax.nn.softmax(x, axis=1) return params, apply model, apply = mlp(10, 20, 30) x = jnp.array(jnp.random.randn(5, 10)) y = apply(model, x) print(list(jnp.sum(y, axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 17, in <module>
model, apply = mlp(10, 20, 30)
^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 7, in mlp
'linear1': jax.nn.initializers.he_normal()((input_size, hidden_size)),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: variance_scaling.<locals>.init() missing 1 required positional argument: 'shape'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Dense(input_size, hidden_size) self.linear2 = jax.nn.Dense(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Dense(input_size, hidden_size) self.linear2 = jax.nn.Dense(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Dense(input_size, hidden_size) self.linear2 = jax.nn.Dense(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(jnp.sum(y, axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 16, in <module>
model = MLP(10, 20, 30)
^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 7, in __init__
self.linear1 = jax.nn.Dense(input_size, hidden_size)
^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/jax/_src/deprecations.py", line 53, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.nn' has no attribute 'Dense'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import jit class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = self.init_params(input_size, hidden_size, output_size) def init_params(self, input_size, hidden_size, output_size): keys = jax.random.split(jax.random.PRNGKey(42), 2) params = { 'linear1': jax.random.normal(keys[0], (input_size, hidden_size)), 'linear2': jax.random.normal(keys[1], (hidden_size, output_size)), } return params def __call__(self, x): x = jnp.dot(x, self.params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.params['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import jit class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = self.init_params(input_size, hidden_size, output_size) def init_params(self, input_size, hidden_size, output_size): keys = jax.random.split(jax.random.PRNGKey(42), 2) params = { 'linear1': jax.random.normal(keys[0], (input_size, hidden_size)), 'linear2': jax.random.normal(keys[1], (hidden_size, output_size)), } return params def __call__(self, x): x = jnp.dot(x, self.params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.params['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import jit class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = self.init_params(input_size, hidden_size, output_size) def init_params(self, input_size, hidden_size, output_size): keys = jax.random.split(jax.random.PRNGKey(42), 2) params = { 'linear1': jax.random.normal(keys[0], (input_size, hidden_size)), 'linear2': jax.random.normal(keys[1], (hidden_size, output_size)), } return params def __call__(self, x): x = jnp.dot(x, self.params['linear1']) x = jax.nn.relu(x) x = jnp.dot(x, self.params['linear2']) return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal(jax.random.PRNGKey(42), (5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> print(list(y.flatten().sum(1))) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 226, in sum return _reduce_sum(a, axis=_ensure_optional_axes(axis), dtype=dtype, out=out, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 216, in _reduce_sum return _reduction(a, "sum", np.sum, lax.add, 0, preproc=_cast_to_numeric, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 96, in _reduction pos_dims, dims = _reduction_dims(a, axis) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in _reduction_dims canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 154, in <genexpr> canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in _canonicalize_axis_allow_named return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/jax/_src/numpy/reductions.py", line 147, in <lambda> return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: axis 1 is out of bounds for array of dimension 1</p> <hr /> <p>For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these. |
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Linear(input_size, hidden_size) self.linear2 = jax.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=-1) model = MLP(10, 20, 30) x = jnp.randn(5, 10) y = model(x) print(list(jnp.sum(y, axis=1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Linear(input_size, hidden_size) self.linear2 = jax.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=-1) model = MLP(10, 20, 30) x = jnp.randn(5, 10) y = model(x) print(list(jnp.sum(y, axis=1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.linear1 = jax.nn.Linear(input_size, hidden_size) self.linear2 = jax.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = jax.nn.relu(x) x = self.linear2(x) return jax.nn.softmax(x, axis=-1) model = MLP(10, 20, 30) x = jnp.randn(5, 10) y = model(x) print(list(jnp.sum(y, axis=1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 16, in <module>
model = MLP(10, 20, 30)
^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 7, in __init__
self.linear1 = jax.nn.Linear(input_size, hidden_size)
^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/jax/_src/deprecations.py", line 53, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.nn' has no attribute 'Linear'
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = {"W1": jax.random.normal((input_size, hidden_size)), "b1": jax.random.normal((hidden_size, )), "W2": jax.random.normal((hidden_size, output_size)), "b2": jax.random.normal((output_size, ))} def __call__(self, x): x = jnp.dot(x, self.params["W1"]) + self.params["b1"] x = jax.nn.relu(x) x = jnp.dot(x, self.params["W2"]) + self.params["b2"] return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal((5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = {"W1": jax.random.normal((input_size, hidden_size)), "b1": jax.random.normal((hidden_size, )), "W2": jax.random.normal((hidden_size, output_size)), "b2": jax.random.normal((output_size, ))} def __call__(self, x): x = jnp.dot(x, self.params["W1"]) + self.params["b1"] x = jax.nn.relu(x) x = jnp.dot(x, self.params["W2"]) + self.params["b2"] return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal((5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import jax import jax.numpy as jnp class MLP: def __init__(self, input_size, hidden_size, output_size): self.params = {"W1": jax.random.normal((input_size, hidden_size)), "b1": jax.random.normal((hidden_size, )), "W2": jax.random.normal((hidden_size, output_size)), "b2": jax.random.normal((output_size, ))} def __call__(self, x): x = jnp.dot(x, self.params["W1"]) + self.params["b1"] x = jax.nn.relu(x) x = jnp.dot(x, self.params["W2"]) + self.params["b2"] return jax.nn.softmax(x, axis=1) model = MLP(10, 20, 30) x = jax.random.normal((5, 10)) y = model(x) print(list(y.flatten().sum(1))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 18, in <module>
model = MLP(10, 20, 30)
^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 7, in __init__
self.params = {"W1": jax.random.normal((input_size, hidden_size)),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/jax/_src/random.py", line 713, in normal
key, _ = _check_prng_key("normal", key)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/jax/_src/random.py", line 101, in _check_prng_key
raise TypeError(f'unexpected PRNG key type {type(key)}')
TypeError: unexpected PRNG key type <class 'tuple'>
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False