Initial Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

LLM Generation

Query

Convert the following PyTorch code to pure JAX. Do not use any other libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import torch

class MLP(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_size, hidden_size)
        self.linear2 = torch.nn.Linear(hidden_size, output_size)

    def __call__(self, x):
        x = self.linear1(x)
        x = torch.relu(x)
        x = self.linear2(x)
        return torch.nn.functional.softmax(x, dim=1)

model = MLP(10, 20, 30)
x = torch.randn(5, 10)
y = model(x)
print(list(y.flatten().numpy().sum(1)))

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import jax
import jax.numpy as jnp
import jax.random as random
from jax.nn import initializers

# Define the MLP structure and forward pass using functions

def init_mlp_params(input_size, hidden_size, output_size, key):
    """Initializes parameters for a two-layer MLP."""
    key1, key2 = random.split(key)

    # Layer 1 parameters (Weight and Bias)
    # Use Glorot/Xavier initialization, common for linear layers
    # JAX convention is often (in_features, out_features) for weights
    w1_key, b1_key = random.split(key1)
    W1 = initializers.glorot_normal()(w1_key, (input_size, hidden_size))
    b1 = initializers.zeros(b1_key, (hidden_size,)) # Initialize biases to zero

    # Layer 2 parameters (Weight and Bias)
    w2_key, b2_key = random.split(key2)
    W2 = initializers.glorot_normal()(w2_key, (hidden_size, output_size))
    b2 = initializers.zeros(b2_key, (output_size,))

    # Store parameters in a structure (e.g., a list of tuples or a dictionary)
    # Using a list of tuples (W, b) for each layer
    params = [(W1, b1), (W2, b2)]
    return params

# Define the forward pass function
# Use jax.jit for potential performance improvement through compilation
@jax.jit
def mlp_predict(params, x):
    """MLP forward pass."""
    # Unpack parameters
    (W1, b1), (W2, b2) = params

    # First linear layer + ReLU activation
    x = jnp.dot(x, W1) + b1
    x = jax.nn.relu(x)

    # Second linear layer
    x = jnp.dot(x, W2) + b2

    # Softmax activation
    # axis=1 corresponds to PyTorch's dim=1 for shape (batch, features)
    return jax.nn.softmax(x, axis=1)

# --- Execution Example ---

# Define model dimensions
input_size = 10
hidden_size = 20
output_size = 30
batch_size = 5

# Create a random key for initialization and data generation
key = random.PRNGKey(0) # Use a fixed seed for reproducibility
init_key, data_key = random.split(key)

# Initialize model parameters
params = init_mlp_params(input_size, hidden_size, output_size, init_key)

# Generate random input data (equivalent to torch.randn)
x = random.normal(data_key, (batch_size, input_size))

# Perform the forward pass
y = mlp_predict(params, x)

# Print the sum of probabilities for each item in the batch
# Note: The original PyTorch print statement `list(y.flatten().numpy().sum(1))`
# would likely cause an error because after flattening, the array is 1D and
# sum(1) is invalid.
# A more meaningful operation after softmax is often summing probabilities
# per batch item (axis=1), which should be close to 1.0.
# We replicate this meaningful operation here using JAX arrays and .tolist().
print(y.sum(axis=1).tolist())

# If you strictly wanted the sum of *all* elements in the flattened output:
# print(y.flatten().sum().tolist())
**Explanation:** 1. **Imports:** We import `jax`, `jax.numpy` (as `jnp`), `jax.random`, and `jax.nn.initializers`. 2. **`init_mlp_params` Function:** * This function replaces the `__init__` method of the PyTorch `Module`. * It takes the layer sizes and a `jax.random.PRNGKey` as input. JAX requires explicit key management for random operations. * It splits the key to generate unique keys for initializing weights (`W1`, `W2`) and biases (`b1`, `b2`) for each layer. * `jax.nn.initializers.glorot_normal()` is used for weight initialization, similar to the default in `torch.nn.Linear`. * `jax.nn.initializers.zeros` initializes biases to zero. * Crucially, it returns the parameters, typically in a structured format like a list of tuples `[(W1, b1), (W2, b2)]` or a nested dictionary. This structure (`params`) needs to be passed explicitly to the prediction function. 3. **`mlp_predict` Function:** * This function replaces the `__call__` method. * It takes the `params` (returned by `init_mlp_params`) and the input `x` as arguments. JAX functions are typically *pure*, meaning they don't hold internal state; parameters are passed in. * It unpacks the parameters. * It performs the linear transformations using `jnp.dot` for matrix multiplication and adds the bias. * It applies the ReLU activation using `jax.nn.relu`. * It applies the final Softmax activation using `jax.nn.softmax(x, axis=1)`. `axis=1` ensures softmax is applied across the feature dimension for each item in the batch, matching PyTorch's `dim=1`. * The `@jax.jit` decorator compiles the function for faster execution, especially when called repeatedly. 4. **Execution:** * We define the network dimensions and batch size. * A master `PRNGKey` is created. * The key is split to provide separate keys for parameter initialization (`init_key`) and generating random input data (`data_key`). This ensures reproducibility and isolates randomness sources. * `init_mlp_params` is called to create the network parameters. * `jax.random.normal` generates input data `x` similar to `torch.randn`. * `mlp_predict` is called with the `params` and `x` to get the output `y`. * The final print statement calculates the sum of probabilities along `axis=1` (sum for each batch item) and converts the resulting JAX array to a Python list using `.tolist()`. This is analogous to the likely *intended* operation in the original (but flawed) PyTorch print statement.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import jax
import jax.numpy as jnp
import jax.random as random
from jax.nn import initializers

# Define the MLP structure and forward pass using functions

def init_mlp_params(input_size, hidden_size, output_size, key):
    """Initializes parameters for a two-layer MLP."""
    key1, key2 = random.split(key)

    # Layer 1 parameters (Weight and Bias)
    # Use Glorot/Xavier initialization, common for linear layers
    # JAX convention is often (in_features, out_features) for weights
    w1_key, b1_key = random.split(key1)
    W1 = initializers.glorot_normal()(w1_key, (input_size, hidden_size))
    b1 = initializers.zeros(b1_key, (hidden_size,)) # Initialize biases to zero

    # Layer 2 parameters (Weight and Bias)
    w2_key, b2_key = random.split(key2)
    W2 = initializers.glorot_normal()(w2_key, (hidden_size, output_size))
    b2 = initializers.zeros(b2_key, (output_size,))

    # Store parameters in a structure (e.g., a list of tuples or a dictionary)
    # Using a list of tuples (W, b) for each layer
    params = [(W1, b1), (W2, b2)]
    return params

# Define the forward pass function
# Use jax.jit for potential performance improvement through compilation
@jax.jit
def mlp_predict(params, x):
    """MLP forward pass."""
    # Unpack parameters
    (W1, b1), (W2, b2) = params

    # First linear layer + ReLU activation
    x = jnp.dot(x, W1) + b1
    x = jax.nn.relu(x)

    # Second linear layer
    x = jnp.dot(x, W2) + b2

    # Softmax activation
    # axis=1 corresponds to PyTorch's dim=1 for shape (batch, features)
    return jax.nn.softmax(x, axis=1)

# --- Execution Example ---

# Define model dimensions
input_size = 10
hidden_size = 20
output_size = 30
batch_size = 5

# Create a random key for initialization and data generation
key = random.PRNGKey(0) # Use a fixed seed for reproducibility
init_key, data_key = random.split(key)

# Initialize model parameters
params = init_mlp_params(input_size, hidden_size, output_size, init_key)

# Generate random input data (equivalent to torch.randn)
x = random.normal(data_key, (batch_size, input_size))

# Perform the forward pass
y = mlp_predict(params, x)

# Print the sum of probabilities for each item in the batch
# Note: The original PyTorch print statement `list(y.flatten().numpy().sum(1))`
# would likely cause an error because after flattening, the array is 1D and
# sum(1) is invalid.
# A more meaningful operation after softmax is often summing probabilities
# per batch item (axis=1), which should be close to 1.0.
# We replicate this meaningful operation here using JAX arrays and .tolist().
print(y.sum(axis=1).tolist())

# If you strictly wanted the sum of *all* elements in the flattened output:
# print(y.flatten().sum().tolist())

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import jax
import jax.numpy as jnp
import jax.random as random
from jax.nn import initializers

# Define the MLP structure and forward pass using functions

def init_mlp_params(input_size, hidden_size, output_size, key):
    """Initializes parameters for a two-layer MLP."""
    key1, key2 = random.split(key)

    # Layer 1 parameters (Weight and Bias)
    # Use Glorot/Xavier initialization, common for linear layers
    # JAX convention is often (in_features, out_features) for weights
    w1_key, b1_key = random.split(key1)
    W1 = initializers.glorot_normal()(w1_key, (input_size, hidden_size))
    b1 = initializers.zeros(b1_key, (hidden_size,)) # Initialize biases to zero

    # Layer 2 parameters (Weight and Bias)
    w2_key, b2_key = random.split(key2)
    W2 = initializers.glorot_normal()(w2_key, (hidden_size, output_size))
    b2 = initializers.zeros(b2_key, (output_size,))

    # Store parameters in a structure (e.g., a list of tuples or a dictionary)
    # Using a list of tuples (W, b) for each layer
    params = [(W1, b1), (W2, b2)]
    return params

# Define the forward pass function
# Use jax.jit for potential performance improvement through compilation
@jax.jit
def mlp_predict(params, x):
    """MLP forward pass."""
    # Unpack parameters
    (W1, b1), (W2, b2) = params

    # First linear layer + ReLU activation
    x = jnp.dot(x, W1) + b1
    x = jax.nn.relu(x)

    # Second linear layer
    x = jnp.dot(x, W2) + b2

    # Softmax activation
    # axis=1 corresponds to PyTorch's dim=1 for shape (batch, features)
    return jax.nn.softmax(x, axis=1)

# --- Execution Example ---

# Define model dimensions
input_size = 10
hidden_size = 20
output_size = 30
batch_size = 5

# Create a random key for initialization and data generation
key = random.PRNGKey(0) # Use a fixed seed for reproducibility
init_key, data_key = random.split(key)

# Initialize model parameters
params = init_mlp_params(input_size, hidden_size, output_size, init_key)

# Generate random input data (equivalent to torch.randn)
x = random.normal(data_key, (batch_size, input_size))

# Perform the forward pass
y = mlp_predict(params, x)

# Print the sum of probabilities for each item in the batch
# Note: The original PyTorch print statement `list(y.flatten().numpy().sum(1))`
# would likely cause an error because after flattening, the array is 1D and
# sum(1) is invalid.
# A more meaningful operation after softmax is often summing probabilities
# per batch item (axis=1), which should be close to 1.0.
# We replicate this meaningful operation here using JAX arrays and .tolist().
print(y.sum(axis=1).tolist())

# If you strictly wanted the sum of *all* elements in the flattened output:
# print(y.flatten().sum().tolist())
And got the output: [0.9999998807907104, 1.0, 0.9999999403953552, 1.0, 1.0]

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string 0.99999: True

Substring Evaluation

Testing if the previous output contains the string 1.0: False

Substring Evaluation

Testing if the previous output contains the string 1.00000: False

Substring Evaluation

Testing if the previous output contains the string 1.0,: True

Final Answer: True

Check this condition is not true:

Substring Evaluation

Testing if the previous output contains the string import torch: False

Final Answer: True

Final Answer: True