Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = {"w1": w1, "b1": b1, "w2": w2, "b2": b2} def forward(params, x): x = jax.nn.relu(jnp.dot(x, params["w1"]) + params["b1"]) x = jnp.dot(x, params["w2"]) + params["b2"] return jax.nn.softmax(x, axis=1) return params, forward key = random.PRNGKey(0) params, forward = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = forward(params, x) print(jnp.sum(y, axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = {"w1": w1, "b1": b1, "w2": w2, "b2": b2} def forward(params, x): x = jax.nn.relu(jnp.dot(x, params["w1"]) + params["b1"]) x = jnp.dot(x, params["w2"]) + params["b2"] return jax.nn.softmax(x, axis=1) return params, forward key = random.PRNGKey(0) params, forward = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = forward(params, x) print(jnp.sum(y, axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = {"w1": w1, "b1": b1, "w2": w2, "b2": b2} def forward(params, x): x = jax.nn.relu(jnp.dot(x, params["w1"]) + params["b1"]) x = jnp.dot(x, params["w2"]) + params["b2"] return jax.nn.softmax(x, axis=1) return params, forward key = random.PRNGKey(0) params, forward = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = forward(params, x) print(jnp.sum(y, axis=1)) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 23, in <module>
x = random.randn(key, (5, 10))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/deprecations.py", line 54, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.random' has no attribute 'randn'. Did you mean: 'randint'?
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return apply key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return apply key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return apply key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 23, in <module>
x = random.randn(key, (5, 10))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/deprecations.py", line 54, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.random' has no attribute 'randn'. Did you mean: 'randint'?
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | from jax import numpy as jnp from jax import random from jax.nn import relu, softmax def MLP(input_size, hidden_size, output_size, key): k1, k2 = random.split(key, 2) linear1 = Linear(input_size, hidden_size, k1) linear2 = Linear(hidden_size, output_size, k2) def apply_fn(x): x = linear1(x) x = relu(x) x = linear2(x) return softmax(x, axis=1) return apply_fn class Linear: def __init__(self, in_features, out_features, key): self.w = random.normal(key, (in_features, out_features)) self.b = jnp.zeros((out_features,)) def __call__(self, x): return jnp.dot(x, self.w) + self.b key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | from jax import numpy as jnp from jax import random from jax.nn import relu, softmax def MLP(input_size, hidden_size, output_size, key): k1, k2 = random.split(key, 2) linear1 = Linear(input_size, hidden_size, k1) linear2 = Linear(hidden_size, output_size, k2) def apply_fn(x): x = linear1(x) x = relu(x) x = linear2(x) return softmax(x, axis=1) return apply_fn class Linear: def __init__(self, in_features, out_features, key): self.w = random.normal(key, (in_features, out_features)) self.b = jnp.zeros((out_features,)) def __call__(self, x): return jnp.dot(x, self.w) + self.b key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | from jax import numpy as jnp from jax import random from jax.nn import relu, softmax def MLP(input_size, hidden_size, output_size, key): k1, k2 = random.split(key, 2) linear1 = Linear(input_size, hidden_size, k1) linear2 = Linear(hidden_size, output_size, k2) def apply_fn(x): x = linear1(x) x = relu(x) x = linear2(x) return softmax(x, axis=1) return apply_fn class Linear: def __init__(self, in_features, out_features, key): self.w = random.normal(key, (in_features, out_features)) self.b = jnp.zeros((out_features,)) def __call__(self, x): return jnp.dot(x, self.w) + self.b key = random.PRNGKey(0) model = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = model(x) print(jnp.sum(y, axis=1)) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 27, in <module>
x = random.randn(key, (5, 10))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/deprecations.py", line 54, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.random' has no attribute 'randn'. Did you mean: 'randint'?
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size): key1, key2 = random.split(random.PRNGKey(0)) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jax.nn.relu(jnp.dot(x, w1) + b1) x = jax.nn.softmax(jnp.dot(x, w2) + b2, axis=1) return x return apply model = MLP(10, 20, 30) x = random.normal(random.PRNGKey(1), (5, 10)) y = model(x) print(list(y.sum(1))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size): key1, key2 = random.split(random.PRNGKey(0)) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jax.nn.relu(jnp.dot(x, w1) + b1) x = jax.nn.softmax(jnp.dot(x, w2) + b2, axis=1) return x return apply model = MLP(10, 20, 30) x = random.normal(random.PRNGKey(1), (5, 10)) y = model(x) print(list(y.sum(1))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size): key1, key2 = random.split(random.PRNGKey(0)) w1 = random.normal(key1, (input_size, hidden_size)) b1 = random.normal(key1, (hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = random.normal(key2, (output_size,)) def apply(x): x = jax.nn.relu(jnp.dot(x, w1) + b1) x = jax.nn.softmax(jnp.dot(x, w2) + b2, axis=1) return x return apply model = MLP(10, 20, 30) x = random.normal(random.PRNGKey(1), (5, 10)) y = model(x) print(list(y.sum(1))) |
[Array(1., dtype=float32), Array(1., dtype=float32), Array(1., dtype=float32), Array(1., dtype=float32), Array(0.99999976, dtype=float32)]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = (w1, b1, w2, b2) def apply(params, x): w1, b1, w2, b2 = params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return params, apply key = random.PRNGKey(0) params, apply_fn = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = apply_fn(params, x) print(jnp.sum(y, axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = (w1, b1, w2, b2) def apply(params, x): w1, b1, w2, b2 = params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return params, apply key = random.PRNGKey(0) params, apply_fn = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = apply_fn(params, x) print(jnp.sum(y, axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import jax import jax.numpy as jnp from jax import random def MLP(input_size, hidden_size, output_size, key): key1, key2 = random.split(key) w1 = random.normal(key1, (input_size, hidden_size)) b1 = jnp.zeros((hidden_size,)) w2 = random.normal(key2, (hidden_size, output_size)) b2 = jnp.zeros((output_size,)) params = (w1, b1, w2, b2) def apply(params, x): w1, b1, w2, b2 = params x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) x = jnp.dot(x, w2) + b2 return jax.nn.softmax(x, axis=1) return params, apply key = random.PRNGKey(0) params, apply_fn = MLP(10, 20, 30, key) x = random.randn(key, (5, 10)) y = apply_fn(params, x) print(jnp.sum(y, axis=1)) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 25, in <module>
x = random.randn(key, (5, 10))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/deprecations.py", line 54, in getattr
raise AttributeError(f"module {module!r} has no attribute {name!r}")
AttributeError: module 'jax.random' has no attribute 'randn'. Did you mean: 'randint'?
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False