Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
To convert the given PyTorch code to pure JAX, we need to replace PyTorch-specific constructs with their JAX equivalents. Here's the equivalent code in JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp from jax import random # Define the MLP model using JAX class MLP: def __init__(self, input_size, hidden_size, output_size, key): key1, key2 = random.split(key) self.linear1 = self._initialize_linear(key1, input_size, hidden_size) self.linear2 = self._initialize_linear(key2, hidden_size, output_size) def _initialize_linear(self, key, in_features, out_features): # Initialize weights and biases w_key, b_key = random.split(key) weights = random.normal(w_key, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) biases = random.normal(b_key, (out_features,)) return (weights, biases) def __call__(self, x): # Apply the first linear layer x = jnp.dot(x, self.linear1[0]) + self.linear1[1] # Apply ReLU activation x = jax.nn.relu(x) # Apply the second linear layer x = jnp.dot(x, self.linear2[0]) + self.linear2[1] # Apply softmax along the last dimension return jax.nn.softmax(x, axis=-1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create a random input x = random.normal(key, (5, 10)) # Forward pass through the model y = model(x) # Print the sum of each row in the output print(jnp.sum(y, axis=1)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp from jax import random # Define the MLP model using JAX class MLP: def __init__(self, input_size, hidden_size, output_size, key): key1, key2 = random.split(key) self.linear1 = self._initialize_linear(key1, input_size, hidden_size) self.linear2 = self._initialize_linear(key2, hidden_size, output_size) def _initialize_linear(self, key, in_features, out_features): # Initialize weights and biases w_key, b_key = random.split(key) weights = random.normal(w_key, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) biases = random.normal(b_key, (out_features,)) return (weights, biases) def __call__(self, x): # Apply the first linear layer x = jnp.dot(x, self.linear1[0]) + self.linear1[1] # Apply ReLU activation x = jax.nn.relu(x) # Apply the second linear layer x = jnp.dot(x, self.linear2[0]) + self.linear2[1] # Apply softmax along the last dimension return jax.nn.softmax(x, axis=-1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create a random input x = random.normal(key, (5, 10)) # Forward pass through the model y = model(x) # Print the sum of each row in the output print(jnp.sum(y, axis=1)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import jax import jax.numpy as jnp from jax import random # Define the MLP model using JAX class MLP: def __init__(self, input_size, hidden_size, output_size, key): key1, key2 = random.split(key) self.linear1 = self._initialize_linear(key1, input_size, hidden_size) self.linear2 = self._initialize_linear(key2, hidden_size, output_size) def _initialize_linear(self, key, in_features, out_features): # Initialize weights and biases w_key, b_key = random.split(key) weights = random.normal(w_key, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) biases = random.normal(b_key, (out_features,)) return (weights, biases) def __call__(self, x): # Apply the first linear layer x = jnp.dot(x, self.linear1[0]) + self.linear1[1] # Apply ReLU activation x = jax.nn.relu(x) # Apply the second linear layer x = jnp.dot(x, self.linear2[0]) + self.linear2[1] # Apply softmax along the last dimension return jax.nn.softmax(x, axis=-1) # Initialize the model key = random.PRNGKey(0) model = MLP(10, 20, 30, key) # Create a random input x = random.normal(key, (5, 10)) # Forward pass through the model y = model(x) # Print the sum of each row in the output print(jnp.sum(y, axis=1)) |
[1. 1. 1. 1. 1.]
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False