Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent JAX implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) # Using He initialization w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'weight': w, 'bias': b} def linear(params, x): return x @ params['weight'] + params['bias'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) y = model(x) print(list(y.flatten().sum())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) # Using He initialization w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'weight': w, 'bias': b} def linear(params, x): return x @ params['weight'] + params['bias'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) y = model(x) print(list(y.flatten().sum())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) # Using He initialization w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'weight': w, 'bias': b} def linear(params, x): return x @ params['weight'] + params['bias'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) y = model(x) print(list(y.flatten().sum())) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 44, in <module>
print(list(y.flatten().sum()))
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/jax/_src/array.py", line 374, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent code using pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random from functools import partial class MLP: def __init__(self, input_size, hidden_size, output_size, key): # Split the key for different weight initializations key1, key2 = random.split(key) # Initialize weights and biases scale = 1.0 / jnp.sqrt(input_size) self.w1 = random.normal(key1, (input_size, hidden_size)) * scale self.b1 = jnp.zeros(hidden_size) scale = 1.0 / jnp.sqrt(hidden_size) self.w2 = random.normal(key2, (hidden_size, output_size)) * scale self.b2 = jnp.zeros(output_size) def __call__(self, x): # First linear layer x = jnp.dot(x, self.w1) + self.b1 # ReLU activation x = jnp.maximum(0, x) # Second linear layer x = jnp.dot(x, self.w2) + self.b2 # Softmax activation x = jax.nn.softmax(x, axis=1) return x # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(10, 20, 30, key) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(list(y.flatten().sum())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random from functools import partial class MLP: def __init__(self, input_size, hidden_size, output_size, key): # Split the key for different weight initializations key1, key2 = random.split(key) # Initialize weights and biases scale = 1.0 / jnp.sqrt(input_size) self.w1 = random.normal(key1, (input_size, hidden_size)) * scale self.b1 = jnp.zeros(hidden_size) scale = 1.0 / jnp.sqrt(hidden_size) self.w2 = random.normal(key2, (hidden_size, output_size)) * scale self.b2 = jnp.zeros(output_size) def __call__(self, x): # First linear layer x = jnp.dot(x, self.w1) + self.b1 # ReLU activation x = jnp.maximum(0, x) # Second linear layer x = jnp.dot(x, self.w2) + self.b2 # Softmax activation x = jax.nn.softmax(x, axis=1) return x # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(10, 20, 30, key) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(list(y.flatten().sum())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import jax import jax.numpy as jnp from jax import random from functools import partial class MLP: def __init__(self, input_size, hidden_size, output_size, key): # Split the key for different weight initializations key1, key2 = random.split(key) # Initialize weights and biases scale = 1.0 / jnp.sqrt(input_size) self.w1 = random.normal(key1, (input_size, hidden_size)) * scale self.b1 = jnp.zeros(hidden_size) scale = 1.0 / jnp.sqrt(hidden_size) self.w2 = random.normal(key2, (hidden_size, output_size)) * scale self.b2 = jnp.zeros(output_size) def __call__(self, x): # First linear layer x = jnp.dot(x, self.w1) + self.b1 # ReLU activation x = jnp.maximum(0, x) # Second linear layer x = jnp.dot(x, self.w2) + self.b2 # Softmax activation x = jax.nn.softmax(x, axis=1) return x # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(10, 20, 30, key) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(list(y.flatten().sum())) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 44, in <module>
print(list(y.flatten().sum()))
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/jax/_src/array.py", line 374, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent code written in pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_linear_layer(key: jax.random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: k1, k2 = random.split(key) weight = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) bias = random.normal(k2, (out_dim,)) * 0.01 return weight, bias class MLP: def __init__(self, key: jax.random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Split the PRNG key k1, k2 = random.split(key) # Initialize the layers self.w1, self.b1 = init_linear_layer(k1, input_size, hidden_size) self.w2, self.b2 = init_linear_layer(k2, hidden_size, output_size) def linear(self, x: jnp.ndarray, w: jnp.ndarray, b: jnp.ndarray) -> jnp.ndarray: return jnp.dot(x, w) + b def __call__(self, x: jnp.ndarray) -> jnp.ndarray: x = self.linear(x, self.w1, self.b1) x = jax.nn.relu(x) x = self.linear(x, self.w2, self.b2) return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_linear_layer(key: jax.random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: k1, k2 = random.split(key) weight = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) bias = random.normal(k2, (out_dim,)) * 0.01 return weight, bias class MLP: def __init__(self, key: jax.random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Split the PRNG key k1, k2 = random.split(key) # Initialize the layers self.w1, self.b1 = init_linear_layer(k1, input_size, hidden_size) self.w2, self.b2 = init_linear_layer(k2, hidden_size, output_size) def linear(self, x: jnp.ndarray, w: jnp.ndarray, b: jnp.ndarray) -> jnp.ndarray: return jnp.dot(x, w) + b def __call__(self, x: jnp.ndarray) -> jnp.ndarray: x = self.linear(x, self.w1, self.b1) x = jax.nn.relu(x) x = self.linear(x, self.w2, self.b2) return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_linear_layer(key: jax.random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: k1, k2 = random.split(key) weight = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) bias = random.normal(k2, (out_dim,)) * 0.01 return weight, bias class MLP: def __init__(self, key: jax.random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Split the PRNG key k1, k2 = random.split(key) # Initialize the layers self.w1, self.b1 = init_linear_layer(k1, input_size, hidden_size) self.w2, self.b2 = init_linear_layer(k2, hidden_size, output_size) def linear(self, x: jnp.ndarray, w: jnp.ndarray, b: jnp.ndarray) -> jnp.ndarray: return jnp.dot(x, w) + b def __call__(self, x: jnp.ndarray) -> jnp.ndarray: x = self.linear(x, self.w1, self.b1) x = jax.nn.relu(x) x = self.linear(x, self.w2, self.b2) return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent code in pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * (1.0 / jnp.sqrt(in_dim)) b = random.normal(k2, (out_dim,)) * 0.1 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): # Subtract max for numerical stability exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print sum (note: JAX arrays are already numpy-like) print(list(y.flatten().sum())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * (1.0 / jnp.sqrt(in_dim)) b = random.normal(k2, (out_dim,)) * 0.1 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): # Subtract max for numerical stability exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print sum (note: JAX arrays are already numpy-like) print(list(y.flatten().sum())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * (1.0 / jnp.sqrt(in_dim)) b = random.normal(k2, (out_dim,)) * 0.1 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): # Subtract max for numerical stability exp_x = jnp.exp(x - jnp.max(x, axis=1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.params = { 'linear1': init_linear_layer(key1, input_size, hidden_size), 'linear2': init_linear_layer(key2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Create random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print sum (note: JAX arrays are already numpy-like) print(list(y.flatten().sum())) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 51, in <module>
print(list(y.flatten().sum()))
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/jax/_src/array.py", line 374, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent JAX implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_layer_params(key: random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: # Initialize weights and biases for a linear layer k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return w, b class MLP: def __init__(self, key: random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Initialize parameters for both layers key1, key2 = random.split(key) self.params1 = init_layer_params(key1, input_size, hidden_size) self.params2 = init_layer_params(key2, hidden_size, output_size) def __call__(self, x: jnp.ndarray) -> jnp.ndarray: # First layer w1, b1 = self.params1 x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) # Second layer w2, b2 = self.params2 x = jnp.dot(x, w2) + b2 # Softmax output return jax.nn.softmax(x, axis=1) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_layer_params(key: random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: # Initialize weights and biases for a linear layer k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return w, b class MLP: def __init__(self, key: random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Initialize parameters for both layers key1, key2 = random.split(key) self.params1 = init_layer_params(key1, input_size, hidden_size) self.params2 = init_layer_params(key2, hidden_size, output_size) def __call__(self, x: jnp.ndarray) -> jnp.ndarray: # First layer w1, b1 = self.params1 x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) # Second layer w2, b2 = self.params2 x = jnp.dot(x, w2) + b2 # Softmax output return jax.nn.softmax(x, axis=1) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import jax import jax.numpy as jnp from jax import random from typing import Tuple def init_layer_params(key: random.PRNGKey, in_dim: int, out_dim: int) -> Tuple[jnp.ndarray, jnp.ndarray]: # Initialize weights and biases for a linear layer k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return w, b class MLP: def __init__(self, key: random.PRNGKey, input_size: int, hidden_size: int, output_size: int): # Initialize parameters for both layers key1, key2 = random.split(key) self.params1 = init_layer_params(key1, input_size, hidden_size) self.params2 = init_layer_params(key2, hidden_size, output_size) def __call__(self, x: jnp.ndarray) -> jnp.ndarray: # First layer w1, b1 = self.params1 x = jnp.dot(x, w1) + b1 x = jax.nn.relu(x) # Second layer w2, b2 = self.params2 x = jnp.dot(x, w2) + b2 # Softmax output return jax.nn.softmax(x, axis=1) # Initialize model and generate random input key = random.PRNGKey(0) key1, key2 = random.split(key) model = MLP(key1, 10, 20, 30) x = random.normal(key2, (5, 10)) # Forward pass y = model(x) print(jnp.sum(y.flatten())) |
5.0
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False