Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent code converted to pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) b = random.normal(k2, (out_features,)) return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear(key1, input_size, hidden_size) self.linear2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) b = random.normal(k2, (out_features,)) return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear(key1, input_size, hidden_size) self.linear2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) b = random.normal(k2, (out_features,)) return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear(key1, input_size, hidden_size) self.linear2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize random key key = random.PRNGKey(0) # Create model model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 38, in <module>
print(list(y.flatten().sum(0)))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/array.py", line 340, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent code in pure JAX:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.w1, self.b1 = init_linear(key1, input_size, hidden_size) self.w2, self.b2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.w1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.w2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.w1, self.b1 = init_linear(key1, input_size, hidden_size) self.w2, self.b2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.w1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.w2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.w1, self.b1 = init_linear(key1, input_size, hidden_size) self.w2, self.b2 = init_linear(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.w1) + self.b1 x = jax.nn.relu(x) x = jnp.dot(x, self.w2) + self.b2 return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 36, in <module>
print(list(y.flatten().sum(0)))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/array.py", line 340, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent JAX code for the given PyTorch code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): return jax.nn.softmax(x, axis=-1) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.params = { 'linear1': init_linear_layer(k1, input_size, hidden_size), 'linear2': init_linear_layer(k2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): return jax.nn.softmax(x, axis=-1) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.params = { 'linear1': init_linear_layer(k1, input_size, hidden_size), 'linear2': init_linear_layer(k2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * jnp.sqrt(2.0 / in_features) b = random.normal(k2, (out_features,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): return jax.nn.softmax(x, axis=-1) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.params = { 'linear1': init_linear_layer(k1, input_size, hidden_size), 'linear2': init_linear_layer(k2, hidden_size, output_size) } def __call__(self, x): x = linear(self.params['linear1'], x) x = relu(x) x = linear(self.params['linear2'], x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 47, in <module>
print(list(y.flatten().sum(0)))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/array.py", line 340, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent JAX code for the PyTorch snippet you provided:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear_layer(key1, input_size, hidden_size) self.linear2 = init_linear_layer(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum print(list(y.flatten().sum())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear_layer(key1, input_size, hidden_size) self.linear2 = init_linear_layer(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum print(list(y.flatten().sum())) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_features, out_features): k1, k2 = random.split(key) w = random.normal(k1, (in_features, out_features)) * (2 / in_features)**0.5 b = random.normal(k2, (out_features,)) * 0.01 return w, b class MLP: def __init__(self, key, input_size, hidden_size, output_size): key1, key2 = random.split(key) self.linear1 = init_linear_layer(key1, input_size, hidden_size) self.linear2 = init_linear_layer(key2, hidden_size, output_size) def __call__(self, x): x = jnp.dot(x, self.linear1[0]) + self.linear1[1] x = jax.nn.relu(x) x = jnp.dot(x, self.linear2[0]) + self.linear2[1] return jax.nn.softmax(x, axis=1) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input key, subkey = random.split(key) x = random.normal(subkey, (5, 10)) # Run the model y = model(x) # Print the sum print(list(y.flatten().sum())) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 36, in <module>
print(list(y.flatten().sum()))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/array.py", line 340, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Convert the following PyTorch code to pure JAX. Do not use any other libraries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import torch class MLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, output_size) def __call__(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return torch.nn.functional.softmax(x, dim=1) model = MLP(10, 20, 30) x = torch.randn(5, 10) y = model(x) print(list(y.flatten().numpy().sum(1))) |
Here's the equivalent JAX code for the given PyTorch implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=-1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=-1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.linear1 = init_linear_layer(k1, input_size, hidden_size) self.linear2 = init_linear_layer(k2, hidden_size, output_size) def __call__(self, x): x = linear(self.linear1, x) x = relu(x) x = linear(self.linear2, x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=-1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=-1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.linear1 = init_linear_layer(k1, input_size, hidden_size) self.linear2 = init_linear_layer(k2, hidden_size, output_size) def __call__(self, x): x = linear(self.linear1, x) x = relu(x) x = linear(self.linear2, x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import jax import jax.numpy as jnp from jax import random def init_linear_layer(key, in_dim, out_dim): k1, k2 = random.split(key) w = random.normal(k1, (in_dim, out_dim)) * jnp.sqrt(2.0 / in_dim) b = random.normal(k2, (out_dim,)) * 0.01 return {'w': w, 'b': b} def linear(params, x): return jnp.dot(x, params['w']) + params['b'] def relu(x): return jnp.maximum(0, x) def softmax(x): exp_x = jnp.exp(x - jnp.max(x, axis=-1, keepdims=True)) return exp_x / jnp.sum(exp_x, axis=-1, keepdims=True) class MLP: def __init__(self, key, input_size, hidden_size, output_size): k1, k2 = random.split(key) self.linear1 = init_linear_layer(k1, input_size, hidden_size) self.linear2 = init_linear_layer(k2, hidden_size, output_size) def __call__(self, x): x = linear(self.linear1, x) x = relu(x) x = linear(self.linear2, x) return softmax(x) # Initialize the model key = random.PRNGKey(0) model = MLP(key, 10, 20, 30) # Generate random input subkey = random.split(key)[0] x = random.normal(subkey, (5, 10)) # Forward pass y = model(x) # Print the sum of flattened output print(list(y.flatten().sum(0))) |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 46, in <module>
print(list(y.flatten().sum(0)))
File "/usr/local/lib/python3.10/dist-packages/jax/_src/array.py", line 340, in __iter__
raise TypeError("iteration over a 0-d array") # same as numpy error
TypeError: iteration over a 0-d array
Testing if the previous output contains the string 0.99999
: False
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Testing if the previous output contains the string import torch
: False