How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an AutoTokenizer, you can use the `get_vocab()` method, which returns a dictionary mapping token strings to their respective token IDs. Once you have this dictionary, you can iterate through its keys to get all the tokens. Here's an example code snippet:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoTokenizer # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary dictionary vocab = tokenizer.get_vocab() # Print all the tokens for token in vocab: print(token) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in a Hugging Face `AutoTokenizer`, you can use the `get_vocab()` method to access the vocabulary, and then convert each token ID to its corresponding token string. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 12 13 | from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary vocab = tokenizer.get_vocab() # Convert token IDs to token strings all_tokens = [vocab[i] for i in range(len(vocab))] # Print all tokens print(all_tokens) |
1 2 3 | # Filter out special tokens vocab = {k: v for k, v in tokenizer.get_vocab().items() if k not in tokenizer.additional_special_tokens} all_tokens = list(vocab.values()) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from an AutoTokenizer, you can use the `get_vocab()` method to get the vocabulary, which is a dictionary mapping tokens to their IDs. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary vocab = tokenizer.get_vocab() # Print all the tokens for token in vocab: print(token) |
1 2 3 4 5 6 7 8 9 | # Define a regular expression pattern to match special tokens special_tokens_pattern = r'^[^\w\s]+$' # Filter out the special tokens vocab = {token: token_id for token, token_id in tokenizer.get_vocab().items() if not re.match(special_tokens_pattern, token)} # Print all the tokens for token in vocab: print(token) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from a `AutoTokenizer`, you can use the `get_vocab()` method which returns a dictionary mapping tokens to their corresponding IDs. However, this will include special tokens such as `[PAD]`, `[CLS]`, `[SEP]`, `[MASK]`, etc. If you want to get only the actual vocabulary tokens, you can filter out the special tokens from the dictionary. Here's an example code snippet:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | from transformers import AutoTokenizer # initialize the tokenizer with your pre-trained model name tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # get the vocab dictionary vocab = tokenizer.get_vocab() # filter out special tokens actual_tokens = {k: v for k, v in vocab.items() if k not in tokenizer.special_tokens_map.keys()} # print the number of actual tokens print(len(actual_tokens)) # print the first 10 tokens print(list(actual_tokens.keys())[:10]) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from a Hugging Face `AutoTokenizer`, you can use the `get_vocab()` method. This will return a dictionary where the keys are the tokens and the values are the corresponding IDs. Here's an example of how you can get all tokens from a `BertTokenizer`:
1 2 3 4 5 6 7 8 9 10 | from transformers import BertTokenizer # Initialize the tokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # Get all tokens all_tokens = list(tokenizer.get_vocab().keys()) # Print the number of tokens print(len(all_tokens)) |
Testing if the previous output contains the string get_vocab
: True