How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from an `AutoTokenizer` in the Hugging Face Transformers library, you can use the `get_vocab()` method, which returns the vocabulary of the tokenizer. The vocabulary is essentially a mapping of tokens to their corresponding IDs. Here's how you can do it: 1. First, install the Hugging Face Transformers library if you haven't already:
1 2 | pip install transformers |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | from transformers import AutoTokenizer # Load the tokenizer for a specific model (replace 'model_name' with your desired model) model_name = 'bert-base-uncased' # Example model tokenizer = AutoTokenizer.from_pretrained(model_name) # Get the vocabulary, which is a dictionary of tokens and their corresponding IDs vocab = tokenizer.get_vocab() # Retrieve all tokens tokens = list(vocab.keys()) # Print the tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from an `AutoTokenizer` in the Hugging Face Transformers library, you can use the `get_vocab()` method, which returns the vocabulary of the tokenizer as a dictionary mapping tokens to their corresponding IDs. Here's a step-by-step guide on how to do this: 1. **Install the Transformers library** if you haven't already:
1 2 | pip install transformers |
1 2 3 4 5 6 7 8 9 10 11 12 13 | from transformers import AutoTokenizer # Load the tokenizer for a specific model, e.g., BERT tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary vocab = tokenizer.get_vocab() # If you want to get a list of all tokens tokens = list(vocab.keys()) # Print the tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from an `AutoTokenizer` in the Hugging Face Transformers library, you can use the `get_vocab()` method, which returns the vocabulary as a dictionary mapping tokens to their corresponding indices. Here's a step-by-step guide on how to do this: 1. **Install the Transformers library** (if you haven't already):
1 2 | pip install transformers |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | from transformers import AutoTokenizer # Replace 'bert-base-uncased' with the model you want to use tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Get the vocabulary vocab = tokenizer.get_vocab() # Extract tokens tokens = list(vocab.keys()) # Print the tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens from an `AutoTokenizer` in the Hugging Face Transformers library, you can use the `get_vocab()` method of the tokenizer. This method returns a dictionary containing all the tokens and their corresponding IDs. Here's a simple example to demonstrate how to do this:
1 2 3 4 5 6 7 8 9 10 11 12 13 | from transformers import AutoTokenizer # Load the tokenizer for a specific model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary vocab = tokenizer.get_vocab() # Extract tokens from the vocabulary tokens = list(vocab.keys()) # Display all tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
In the Hugging Face Transformers library, the `AutoTokenizer` class is used to automatically load the appropriate tokenizer for a given model. If you want to retrieve all the tokens from a tokenizer, you can do so by accessing the vocabulary directly. Here’s how you can get all tokens from an `AutoTokenizer`: 1. **Install the Transformers library** (if you haven't already):
1 2 | pip install transformers |
1 2 3 4 5 6 7 8 9 10 11 12 13 | from transformers import AutoTokenizer # Load the tokenizer for a specific model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get all tokens (vocabulary) all_tokens = tokenizer.get_vocab() # If you want just the tokens and not their IDs: tokens_list = list(all_tokens.keys()) print(tokens_list) |
Testing if the previous output contains the string get_vocab
: True