How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in a AutoTokenizer, you can use the `tokenize` method provided by the tokenizer. Here is an example code snippet using the Hugging Face Transformers library:
1 2 3 4 5 6 7 8 9 10 11 12 | from transformers import AutoTokenizer # Initialize the AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input text text = "Hello, how are you doing today?" # Tokenize the input text tokens = tokenizer.tokenize(text) print(tokens) |
Testing if the previous output contains the string get_vocab
: False
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an AutoTokenizer, you can use the `tokenize` method provided by the tokenizer. Here's an example code snippet using the Hugging Face Transformers library in Python:
1 2 3 4 5 6 7 8 9 10 11 12 | from transformers import AutoTokenizer # Initialize the AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input text input_text = "Hello, how are you doing today?" # Tokenize the input text tokens = tokenizer.tokenize(input_text) print(tokens) |
Testing if the previous output contains the string get_vocab
: False
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
You can get all tokens in an AutoTokenizer by using the `tokenize` method provided by the tokenizer. Here is an example code snippet in Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 | from transformers import AutoTokenizer # Load the AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input text text = "Hello, how are you doing today?" # Tokenize the input text tokens = tokenizer.tokenize(text) # Print all tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: False
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
You can get all tokens in an AutoTokenizer by using the `encode` method provided by the tokenizer. Here is an example code snippet in Python to demonstrate how to get all tokens in an AutoTokenizer:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from transformers import AutoTokenizer # Instantiate the AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input text text = "Hello, how are you doing today?" # Encode the input text to get all tokens tokens = tokenizer.encode(text, add_special_tokens=True, return_tensors='pt') # Decode the tokens to get the corresponding tokens decoded_tokens = tokenizer.convert_ids_to_tokens(tokens[0].tolist()) print(decoded_tokens) |
Testing if the previous output contains the string get_vocab
: False
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
You can get all tokens in a AutoTokenizer by calling the `tokenize()` method on the tokenizer object and passing in the text you want to tokenize. This will return a list of tokens that make up the text. Here is an example code snippet using the Hugging Face Transformers library:
1 2 3 4 5 6 7 8 9 10 11 12 | from transformers import AutoTokenizer # Load the AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Text to tokenize text = "Hello, how are you doing today?" # Tokenize the text tokens = tokenizer.tokenize(text) print(tokens) |
1 | ['hello', ',', 'how', 'are', 'you', 'doing', 'today', '?'] |
Testing if the previous output contains the string get_vocab
: False