Initial Query
How do I get all tokens in a AutoTokenizer?
LLM Generation
Query
How do I get all tokens in a AutoTokenizer?
Output
## Getting all tokens in an AutoTokenizer
There are several ways to get all tokens in an AutoTokenizer. Here are three methods:
### 1. Using the `tokenizer.vocab` attribute
The `tokenizer.vocab` attribute is a dictionary that maps each token to its corresponding integer ID. You can use the `keys()` method of this dictionary to get a list of all tokens.
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
all_tokens = list(tokenizer.vocab.keys())
print(all_tokens)
|
### 2. Using the `tokenizer.get_vocab()` method
The `tokenizer.get_vocab()` method returns a list of all tokens in the tokenizer's vocabulary.
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
all_tokens = tokenizer.get_vocab()
print(all_tokens)
|
### 3. Using the `tokenizer.convert_ids_to_tokens()` method
The `tokenizer.convert_ids_to_tokens()` method can be used to convert a list of token IDs to a list of tokens. You can pass a list of all token IDs (which you can get using the `tokenizer.vocab.values()` method) to this method to get a list of all tokens.
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
all_token_ids = list(tokenizer.vocab.values())
all_tokens = tokenizer.convert_ids_to_tokens(all_token_ids)
print(all_tokens)
|
All three methods will give you the same result: a list of all tokens in the AutoTokenizer's vocabulary.
## Additional notes
* The `tokenizer.vocab` attribute also contains information about the special tokens used by the tokenizer, such as the `[CLS]` and `[SEP]` tokens.
* The `tokenizer.get_vocab()` method also returns a list of these special tokens.
* The `tokenizer.convert_ids_to_tokens()` method can also be used to convert a list of token IDs to a list of tokens that includes the special tokens.
I hope this helps! Let me know if you have any other questions.
Substring Evaluation
Testing if the previous output contains the string get_vocab
: True
Initial Query
How do I get all tokens in a AutoTokenizer?
LLM Generation
Query
How do I get all tokens in a AutoTokenizer?
Output
## Getting all tokens in a AutoTokenizer
There are two main ways to get all tokens in a AutoTokenizer:
**1. Using the `get_vocab()` method:**
This method returns a dictionary where the keys are the tokens and the values are their corresponding indices. Here's an example:
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
vocab = tokenizer.get_vocab()
# Print all tokens
for token, index in vocab.items():
print(f"{token}: {index}")
|
**2. Using the `all_special_tokens` and `all_tokens` properties:**
The `all_special_tokens` property returns a list of all special tokens in the tokenizer, while the `all_tokens` property returns a list of all tokens, including both special and regular tokens. Here's an example:
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Print all special tokens
print(tokenizer.all_special_tokens)
# Print all tokens
print(tokenizer.all_tokens)
|
**Additional notes:**
* The `get_vocab()` method is more efficient than using the `all_tokens` property, especially for large vocabularies.
* The `all_tokens` property includes all special tokens, while the `get_vocab()` method only includes regular tokens.
* You can also use the `convert_ids_to_tokens()` method to convert token indices to their corresponding tokens.
Here are some additional resources that you may find helpful:
* Hugging Face Transformers documentation on tokenizers: https://huggingface.co/docs/transformers/tokenizer_summary
* Hugging Face Transformers documentation on the `AutoTokenizer` class: https://huggingface.co/docs/transformers/main_classes/tokenizer#autotokenizer
* Stack Overflow question on how to get all tokens in a BertTokenizer: https://stackoverflow.com/questions/69687690/how-to-get-all-tokens-in-a-berttokenizer
I hope this helps! Let me know if you have any other questions.
Substring Evaluation
Testing if the previous output contains the string get_vocab
: True
Initial Query
How do I get all tokens in a AutoTokenizer?
LLM Generation
Query
How do I get all tokens in a AutoTokenizer?
Output
## Getting all tokens in a AutoTokenizer
There are two main ways to get all tokens in a AutoTokenizer:
### 1. Using the `get_vocab()` method
The `get_vocab()` method returns a dictionary where the keys are the tokens and the values are the corresponding token ids. You can then iterate over this dictionary to get all the tokens.
| from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Get all tokens and their corresponding ids
vocab = tokenizer.get_vocab()
# Print all tokens
for token in vocab:
print(token)
|
### 2. Using the `convert_ids_to_tokens()` method
The `convert_ids_to_tokens()` method takes a list of token ids and returns a list of the corresponding tokens. You can use this method to get all the tokens in the tokenizer's vocabulary by passing in a list of all the possible token ids.
1
2
3
4
5
6
7
8
9
10
11
12
13 | from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Get all token ids
token_ids = list(range(len(tokenizer)))
# Get all tokens
tokens = tokenizer.convert_ids_to_tokens(token_ids)
# Print all tokens
for token in tokens:
print(token)
|
## Additional notes
* The `get_vocab()` method is generally more efficient than the `convert_ids_to_tokens()` method, especially for large vocabularies.
* The `get_vocab()` method returns all tokens in the tokenizer's vocabulary, including special tokens like `[CLS]` and `[SEP]`.
* The `convert_ids_to_tokens()` method only returns the tokens that are actually used in the tokenizer's vocabulary.
I hope this helps! Let me know if you have any other questions.
Substring Evaluation
Testing if the previous output contains the string get_vocab
: True