How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
Okay, you likely mean you want to retrieve the **entire vocabulary** known by a specific `AutoTokenizer` instance. This vocabulary is the mapping between token strings (like "hello", "world", "Ġthe", "##ing") and their corresponding integer IDs that the model uses. Here's how you can do it using the Hugging Face `transformers` library: 1. **Load the Tokenizer:** First, load the tokenizer for the model you're interested in using `AutoTokenizer.from_pretrained()`. 2. **Use the `get_vocab()` Method:** The tokenizer object has a method called `get_vocab()` which returns the vocabulary as a Python dictionary. The keys are the token strings, and the values are their integer IDs. **Example Code:**
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | from transformers import AutoTokenizer # Choose a model name (e.g., 'bert-base-uncased', 'gpt2', 't5-small') # model_name = "bert-base-uncased" model_name = "gpt2" # model_name = "google-bert/bert-base-uncased" # More explicit name # Load the tokenizer try: tokenizer = AutoTokenizer.from_pretrained(model_name) print(f"Successfully loaded tokenizer for '{model_name}'") except Exception as e: print(f"Error loading tokenizer for '{model_name}': {e}") exit() # Get the entire vocabulary dictionary {token_string: token_id} vocabulary = tokenizer.get_vocab() # --- Exploring the Vocabulary --- # 1. Get the total number of tokens (vocabulary size) vocab_size = len(vocabulary) # Alternatively, use the tokenizer's attribute: vocab_size_attr = tokenizer.vocab_size print(f"Vocabulary Size: {vocab_size} (from len(vocab))") print(f"Vocabulary Size: {vocab_size_attr} (from tokenizer.vocab_size)") # 2. Print the first few items (token: id) print("\nFirst 10 items in the vocabulary:") count = 0 for token, token_id in vocabulary.items(): print(f"'{token}': {token_id}") count += 1 if count >= 10: break # 3. Get a list of all token strings all_token_strings = list(vocabulary.keys()) print(f"\nFirst 10 token strings: {all_token_strings[:10]}") print(f"Total number of token strings: {len(all_token_strings)}") # 4. Get a list of all token IDs all_token_ids = list(vocabulary.values()) print(f"\nFirst 10 token IDs: {all_token_ids[:10]}") print(f"Total number of token IDs: {len(all_token_ids)}") # Note: Token IDs usually range from 0 to vocab_size - 1 # 5. Look up the ID for a specific token (if it exists) token_to_find = "hello" if token_to_find in vocabulary: print(f"\nID for token '{token_to_find}': {vocabulary[token_to_find]}") else: # For tokenizers like GPT-2/BPE, 'hello' might be tokenized differently (e.g., 'hell', 'o' or 'Ġhello') # Let's check for 'Ġhello' which is common in GPT-2/RoBERTa (Ġ indicates start of word/space before) gpt2_token = "Ġhello" if gpt2_token in vocabulary: print(f"\nID for token '{gpt2_token}': {vocabulary[gpt2_token]}") else: print(f"\nToken '{token_to_find}' (or variants) not found directly in vocabulary keys.") # You might need to tokenize the word first to see its components tokenized_output = tokenizer.tokenize(token_to_find) print(f"'{token_to_find}' tokenizes to: {tokenized_output}") for sub_token in tokenized_output: if sub_token in vocabulary: print(f" ID for sub_token '{sub_token}': {vocabulary[sub_token]}") # 6. Look up the token string for a specific ID id_to_find = 500 if id_to_find < vocab_size_attr: # You can use the tokenizer's conversion method directly token_string = tokenizer.convert_ids_to_tokens([id_to_find])[0] print(f"\nToken string for ID {id_to_find}: '{token_string}'") # Or manually create an inverse mapping (less efficient for single lookups) # id_to_token_map = {v: k for k, v in vocabulary.items()} # print(f"Token string for ID {id_to_find} (manual lookup): '{id_to_token_map.get(id_to_find, 'ID not found')}'") else: print(f"\nID {id_to_find} is out of range for this vocabulary (size {vocab_size_attr}).") # 7. Get Special Tokens print("\nSpecial Tokens Map:", tokenizer.special_tokens_map) print("All Special Tokens:", tokenizer.all_special_tokens) print("All Special Token IDs:", tokenizer.all_special_ids) |
Testing if the previous output contains the string get_vocab
: True