How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an `AutoTokenizer` object from the Hugging Face Transformers library, you can use the `get_vocab()` method. This method returns a dictionary where the keys are the tokens, and the values are the corresponding token IDs. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Get the vocabulary vocab = tokenizer.get_vocab() # Print all tokens for token in vocab: print(token) |
1 2 | for token, token_id in vocab.items(): print(f"Token: {token}, Token ID: {token_id}") |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an `AutoTokenizer` from the Hugging Face Transformers library, you can use the `get_vocab()` method. This method returns a dictionary where the keys are the token strings, and the values are their corresponding token IDs. Here's an example of how to use it:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Get the tokenizer's vocabulary vocab = tokenizer.get_vocab() # Print all tokens for token, token_id in vocab.items(): print(f"Token: {token}, ID: {token_id}") |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all the tokens in an `AutoTokenizer` from the Hugging Face Transformers library, you can use the `get_vocab()` method. This method returns a dictionary containing all the token-to-index mappings. Here's an example of how to use it:
1 2 3 4 5 6 7 | from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Get the vocabulary vocab = tokenizer.get_vocab() |
1 | tokens = list(vocab.keys()) |
1 | token_indices = list(vocab.values()) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an AutoTokenizer, you can use the `get_vocab()` method. This method returns a dictionary where the keys are the token strings, and the values are the corresponding token IDs. Here's an example of how to use it:
1 2 3 4 5 6 7 8 9 | from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the vocabulary (token to token_id mapping) vocab = tokenizer.get_vocab() # Print the vocabulary print(vocab) |
1 2 3 4 5 | # Get a list of all token strings tokens = list(tokenizer.vocab_keys) # Print the tokens print(tokens) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
To get all tokens in an `AutoTokenizer` from the Hugging Face Transformers library, you can use the `get_vocab()` method. This method returns a dictionary where the keys are the token IDs and the values are the corresponding token strings. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 | from transformers import AutoTokenizer # Load a tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Get the tokenizer's vocabulary vocab = tokenizer.get_vocab() # Print the vocabulary for token_id, token_str in vocab.items(): print(f"Token ID: {token_id}, Token String: {token_str}") |
1 2 3 | first_10_tokens = list(vocab.items())[:10] for token_id, token_str in first_10_tokens: print(f"Token ID: {token_id}, Token String: {token_str}") |
Testing if the previous output contains the string get_vocab
: True