How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
# Getting All Tokens in an AutoTokenizer To retrieve all tokens from a Hugging Face `AutoTokenizer`, you can use either the `.vocab` attribute or the `.get_vocab()` method:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | from transformers import AutoTokenizer # Load a tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Method 1: Using get_vocab() (recommended) vocab_dict = tokenizer.get_vocab() # This returns a dictionary mapping tokens to their IDs # Method 2: Accessing vocab attribute (not available in all tokenizers) if hasattr(tokenizer, 'vocab'): vocab_dict = tokenizer.vocab # If you only want the tokens as a list all_tokens = list(vocab_dict.keys()) # If you want to check the vocabulary size vocab_size = len(vocab_dict) print(f"Vocabulary size: {vocab_size}") # To see a sample of tokens (avoid printing the entire vocabulary) print(list(vocab_dict.keys())[:10]) |
Testing if the previous output contains the string get_vocab
: True
How do I get all tokens in a AutoTokenizer?
How do I get all tokens in a AutoTokenizer?
# Getting All Tokens from an AutoTokenizer To retrieve all tokens from a Hugging Face `AutoTokenizer`, you can use the `get_vocab()` method. Here's how to do it:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | from transformers import AutoTokenizer # Initialize a tokenizer with a pretrained model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # or any other model # Get the complete vocabulary dictionary (token → id) vocab = tokenizer.get_vocab() # If you want just the tokens as a list all_tokens = list(vocab.keys()) # Print vocabulary size print(f"Vocabulary size: {len(vocab)}") # Example: Print the first 10 tokens print("\nSample tokens:") for token, idx in list(vocab.items())[:10]: print(f"{token}: {idx}") |
1 2 | print(tokenizer.special_tokens_map) |
1 2 3 4 5 6 | token_id = vocab.get("hello", None) if token_id is not None: print(f"Token 'hello' exists with ID {token_id}") else: print("Token 'hello' is not in the vocabulary") |
Testing if the previous output contains the string get_vocab
: True