Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Sure, I can help you write a function that uses numpy's strides to achieve this. The numpy.lib.stride_tricks.as_strided function can be used to create a view into the original array with a given shape and strides. Here's a function that should do what you're asking:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the number of steps n_steps = (len(T) - window_size) // step + 1 # Calculate the shape and strides of the new array shape = (n_steps, window_size) strides = (step * T.itemsize, T.itemsize) # Create a strided view into the original array strided_view = as_strided(T, shape=shape, strides=strides) return strided_view |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the number of steps n_steps = (len(T) - window_size) // step + 1 # Calculate the shape and strides of the new array shape = (n_steps, window_size) strides = (step * T.itemsize, T.itemsize) # Create a strided view into the original array strided_view = as_strided(T, shape=shape, strides=strides) return strided_view |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the number of steps n_steps = (len(T) - window_size) // step + 1 # Calculate the shape and strides of the new array shape = (n_steps, window_size) strides = (step * T.itemsize, T.itemsize) # Create a strided view into the original array strided_view = as_strided(T, shape=shape, strides=strides) return strided_view answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Sure, I can help you write a function that uses numpy's strides to achieve this. The function `numpy.lib.stride_tricks.as_strided` can be used to create a view into the original array with a given shape, strides and sub-array offset. Here's a function that should do what you're asking:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the new shape shape = (len(T) - window_size) // step, window_size # Calculate the strides strides = (T.strides[0] * step, T.strides[0]) # Use as_strided to create a view into the original array strided = as_strided(T, shape=shape, strides=strides) return strided |
1 2 | T = np.array(range(100)) # replace with your array result = strides(T) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): shape = (len(T) - window_size) // step, window_size strides = (T.strides[0] * step, T.strides[0]) strided = as_strided(T, shape=shape, strides=strides) return strided |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): shape = (len(T) - window_size) // step, window_size strides = (T.strides[0] * step, T.strides[0]) strided = as_strided(T, shape=shape, strides=strides) return strided answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 17, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got (5, 50) instead of (6, 50)
Testing if the previous output contains the string All tests passed
: False
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Sure, here's a Python function that uses NumPy's strides to achieve this. The function `strides` takes a NumPy array `T` and a step size of 10 and a window size of 50 as per your example.
1 2 3 4 5 6 7 8 9 10 11 12 | import numpy as np def strides(T, step=10, window=50): # Calculate the number of strided arrays n = (len(T) - window) // step + 1 # Create a strided array with the desired shape shape = (n, window) strides = (step * T.strides[0], T.strides[0]) strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return strided |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 | import numpy as np def strides(T, step=10, window=50): # Calculate the number of strided arrays n = (len(T) - window) // step + 1 # Create a strided array with the desired shape shape = (n, window) strides = (step * T.strides[0], T.strides[0]) strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return strided |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np def strides(T, step=10, window=50): # Calculate the number of strided arrays n = (len(T) - window) // step + 1 # Create a strided array with the desired shape shape = (n, window) strides = (step * T.strides[0], T.strides[0]) strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return strided answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Sure, I can help you write a function that uses numpy's strides to achieve this. The numpy.lib.stride_tricks.as_strided function can be used to create a view into the original array with a given shape and strides. Here's a function that should do what you're asking:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the new shape n_rows = (len(T) - window_size) // step + 1 n_cols = window_size # Calculate the strides T_strides = T.strides strides = (T_strides[0] * step, T_strides[0]) # Use as_strided to create the view view = as_strided(T, shape=(n_rows, n_cols), strides=strides) return view |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the new shape n_rows = (len(T) - window_size) // step + 1 n_cols = window_size # Calculate the strides T_strides = T.strides strides = (T_strides[0] * step, T_strides[0]) # Use as_strided to create the view view = as_strided(T, shape=(n_rows, n_cols), strides=strides) return view |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window_size=50, step=10): # Calculate the new shape n_rows = (len(T) - window_size) // step + 1 n_cols = window_size # Calculate the strides T_strides = T.strides strides = (T_strides[0] * step, T_strides[0]) # Use as_strided to create the view view = as_strided(T, shape=(n_rows, n_cols), strides=strides) return view answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Sure, I can help you write a function that uses numpy's strides to create a sliding window view of an array. Here's a simple function that should do what you're asking:
1 2 3 4 5 6 7 8 9 10 11 12 | import numpy as np def strides(arr, window_size=50, step_size=10): # Calculate the number of strides n_strides = (len(arr) - window_size) // step_size + 1 # Create a new array of shape (n_strides, window_size) with the appropriate strides stride_shape = (n_strides, window_size) stride_strides = (step_size * arr.strides[0], arr.strides[0]) strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides) return strided |
1 2 | arr = np.array(range(100)) # Create an array of 100 integers windows = strides(arr) # Get a sliding window view of the array |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 | import numpy as np def strides(arr, window_size=50, step_size=10): n_strides = (len(arr) - window_size) // step_size + 1 stride_shape = (n_strides, window_size) stride_strides = (step_size * arr.strides[0], arr.strides[0]) strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides) return strided |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import numpy as np def strides(arr, window_size=50, step_size=10): n_strides = (len(arr) - window_size) // step_size + 1 stride_shape = (n_strides, window_size) stride_strides = (step_size * arr.strides[0], arr.strides[0]) strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides) return strided answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True