Initial Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

LLM Generation

Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

Output

Sure, I can help you write a function that uses numpy's strides to achieve this. The numpy.lib.stride_tricks.as_strided function can be used to create a view into the original array with a given shape and strides. Here's a function that should do what you're asking:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the number of steps
    n_steps = (len(T) - window_size) // step + 1

    # Calculate the shape and strides of the new array
    shape = (n_steps, window_size)
    strides = (step * T.itemsize, T.itemsize)

    # Create a strided view into the original array
    strided_view = as_strided(T, shape=shape, strides=strides)

    return strided_view
This function takes an array `T` and returns a new array where each row is a sliding window of size `window_size` stepped by `step` over `T`. Please note that this function returns a view into the original array, not a copy. This means that if you modify the strided array, you may also modify the original array. If you want to avoid this, you can make a copy of the strided array using the `copy()` method. Also, be careful with the parameters. If `step` is not a multiple of the item size, or if `window_size` is larger than the array, you may get unexpected results or errors.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the number of steps
    n_steps = (len(T) - window_size) // step + 1

    # Calculate the shape and strides of the new array
    shape = (n_steps, window_size)
    strides = (step * T.itemsize, T.itemsize)

    # Create a strided view into the original array
    strided_view = as_strided(T, shape=shape, strides=strides)

    return strided_view

Check if all of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string as_strided: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the number of steps
    n_steps = (len(T) - window_size) // step + 1

    # Calculate the shape and strides of the new array
    shape = (n_steps, window_size)
    strides = (step * T.itemsize, T.itemsize)

    # Create a strided view into the original array
    strided_view = as_strided(T, shape=shape, strides=strides)

    return strided_view





answer = strides(np.arange(100)).shape
expected = (6, 50)
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = strides(np.arange(100)).sum()
expected = 14850
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Final Answer: True

Initial Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

LLM Generation

Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

Output

Sure, I can help you write a function that uses numpy's strides to achieve this. The function `numpy.lib.stride_tricks.as_strided` can be used to create a view into the original array with a given shape, strides and sub-array offset. Here's a function that should do what you're asking:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the new shape
    shape = (len(T) - window_size) // step, window_size

    # Calculate the strides
    strides = (T.strides[0] * step, T.strides[0])

    # Use as_strided to create a view into the original array
    strided = as_strided(T, shape=shape, strides=strides)

    return strided
This function takes an array `T` and returns a view into the original array where each row is a sliding window of size `window_size` with a step of `step`. Please note that the returned view does not copy the original array’s data, so changes made to the view will also change the original array. Also, be careful with the parameters you pass to `as_strided`. It is possible to create views that reference out-of-bounds memory, which can lead to unexpected results or crashes. In your case, you can call the function with your array and the default parameters like this:
1
2
T = np.array(range(100))  # replace with your array
result = strides(T)
This will give you a view into `T` with sliding windows of size 50 and a step of 10.

Extract Code

I extracted the following code from that output:

1
2
3
4
5
6
7
8
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    shape = (len(T) - window_size) // step, window_size
    strides = (T.strides[0] * step, T.strides[0])
    strided = as_strided(T, shape=shape, strides=strides)
    return strided

Check if all of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string as_strided: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    shape = (len(T) - window_size) // step, window_size
    strides = (T.strides[0] * step, T.strides[0])
    strided = as_strided(T, shape=shape, strides=strides)
    return strided





answer = strides(np.arange(100)).shape
expected = (6, 50)
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = strides(np.arange(100)).sum()
expected = 14850
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 17, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got (5, 50) instead of (6, 50)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Final Answer: False

Initial Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

LLM Generation

Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

Output

Sure, here's a Python function that uses NumPy's strides to achieve this. The function `strides` takes a NumPy array `T` and a step size of 10 and a window size of 50 as per your example.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import numpy as np

def strides(T, step=10, window=50):
    # Calculate the number of strided arrays
    n = (len(T) - window) // step + 1

    # Create a strided array with the desired shape
    shape = (n, window)
    strides = (step * T.strides[0], T.strides[0])
    strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides)

    return strided
This function works by first calculating the number of strided arrays that can fit in `T` given the step size and window size. It then uses `np.lib.stride_tricks.as_strided` to create a new array with the desired shape and strides. Please note that the strided array does not copy the original data, so you should be careful when modifying it as changes will also affect the original array. If you need a copy of the data, you can use the `copy` method of the strided array. Also, be aware that if the length of `T` is not a multiple of the step size plus the window size, the last few elements of `T` will not be included in the strided array. If you want to include as many elements as possible, you might need to adjust the step size or window size accordingly.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import numpy as np

def strides(T, step=10, window=50):
    # Calculate the number of strided arrays
    n = (len(T) - window) // step + 1

    # Create a strided array with the desired shape
    shape = (n, window)
    strides = (step * T.strides[0], T.strides[0])
    strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides)

    return strided

Check if all of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string as_strided: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

def strides(T, step=10, window=50):
    # Calculate the number of strided arrays
    n = (len(T) - window) // step + 1

    # Create a strided array with the desired shape
    shape = (n, window)
    strides = (step * T.strides[0], T.strides[0])
    strided = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides)

    return strided





answer = strides(np.arange(100)).shape
expected = (6, 50)
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = strides(np.arange(100)).sum()
expected = 14850
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Final Answer: True

Initial Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

LLM Generation

Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

Output

Sure, I can help you write a function that uses numpy's strides to achieve this. The numpy.lib.stride_tricks.as_strided function can be used to create a view into the original array with a given shape and strides. Here's a function that should do what you're asking:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the new shape
    n_rows = (len(T) - window_size) // step + 1
    n_cols = window_size

    # Calculate the strides
    T_strides = T.strides
    strides = (T_strides[0] * step, T_strides[0])

    # Use as_strided to create the view
    view = as_strided(T, shape=(n_rows, n_cols), strides=strides)

    return view
This function takes an array `T` and returns a view into `T` where each row is a window of size `window_size` with a step of `step` between the start of each window. The default values for `window_size` and `step` are 50 and 10, respectively, as per your request.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the new shape
    n_rows = (len(T) - window_size) // step + 1
    n_cols = window_size

    # Calculate the strides
    T_strides = T.strides
    strides = (T_strides[0] * step, T_strides[0])

    # Use as_strided to create the view
    view = as_strided(T, shape=(n_rows, n_cols), strides=strides)

    return view

Check if all of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string as_strided: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import numpy as np
from numpy.lib.stride_tricks import as_strided

def strides(T, window_size=50, step=10):
    # Calculate the new shape
    n_rows = (len(T) - window_size) // step + 1
    n_cols = window_size

    # Calculate the strides
    T_strides = T.strides
    strides = (T_strides[0] * step, T_strides[0])

    # Use as_strided to create the view
    view = as_strided(T, shape=(n_rows, n_cols), strides=strides)

    return view





answer = strides(np.arange(100)).shape
expected = (6, 50)
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = strides(np.arange(100)).sum()
expected = 14850
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Final Answer: True

Initial Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

LLM Generation

Query

Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]

Output

Sure, I can help you write a function that uses numpy's strides to create a sliding window view of an array. Here's a simple function that should do what you're asking:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import numpy as np

def strides(arr, window_size=50, step_size=10):
    # Calculate the number of strides
    n_strides = (len(arr) - window_size) // step_size + 1

    # Create a new array of shape (n_strides, window_size) with the appropriate strides
    stride_shape = (n_strides, window_size)
    stride_strides = (step_size * arr.strides[0], arr.strides[0])
    strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides)

    return strided
This function takes an array `arr`, a `window_size` (which is 50 by default), and a `step_size` (which is 10 by default). It calculates the number of strides needed to cover the array, then uses `numpy.lib.stride_tricks.as_strided` to create a new view of the array with the desired sliding window behavior. Please note that this function does not check if the provided window_size and step_size are appropriate for the given array. You should ensure that the array is large enough and the step_size is smaller than window_size to avoid unexpected behavior. Also, the function returns a view, not a copy of the array, so any changes to the returned array will also affect the original array. Here's an example of how you might use this function:
1
2
arr = np.array(range(100))  # Create an array of 100 integers
windows = strides(arr)  # Get a sliding window view of the array
In this example, `windows` would be a 2D array where `windows[i]` is a view of `arr[10*i : 10*i + 50]`.

Extract Code

I extracted the following code from that output:

1
2
3
4
5
6
7
8
import numpy as np

def strides(arr, window_size=50, step_size=10):
    n_strides = (len(arr) - window_size) // step_size + 1
    stride_shape = (n_strides, window_size)
    stride_strides = (step_size * arr.strides[0], arr.strides[0])
    strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides)
    return strided

Check if all of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string as_strided: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np

def strides(arr, window_size=50, step_size=10):
    n_strides = (len(arr) - window_size) // step_size + 1
    stride_shape = (n_strides, window_size)
    stride_strides = (step_size * arr.strides[0], arr.strides[0])
    strided = np.lib.stride_tricks.as_strided(arr, shape=stride_shape, strides=stride_strides)
    return strided





answer = strides(np.arange(100)).shape
expected = (6, 50)
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = strides(np.arange(100)).sum()
expected = 14850
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Final Answer: True