Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Certainly! To achieve this, you can use the `numpy.lib.stride_tricks.as_strided` function. This function allows you to create a view into the array with the desired strides, which means you can generate overlapping subarrays efficiently. Here’s the function `strides` that performs the required task:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import numpy as np def strides(T, window_size=50, step=10): # Calculate the number of windows we will create num_windows = (len(T) - window_size) // step + 1 # Use as_strided to create the strided array strided_array = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step, T.strides[0]) ) return strided_array # Example usage: T = np.arange(100) # Sample data result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import numpy as np def strides(T, window_size=50, step=10): # Calculate the number of windows we will create num_windows = (len(T) - window_size) // step + 1 # Use as_strided to create the strided array strided_array = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step, T.strides[0]) ) return strided_array # Example usage: T = np.arange(100) # Sample data result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np def strides(T, window_size=50, step=10): # Calculate the number of windows we will create num_windows = (len(T) - window_size) // step + 1 # Use as_strided to create the strided array strided_array = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step, T.strides[0]) ) return strided_array # Example usage: T = np.arange(100) # Sample data result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve the desired functionality using the "strided trick" in NumPy, you can use the `np.lib.stride_tricks.as_strided` function. This function allows you to create a view of the original array with a different shape and strides, which can be used to simulate the sliding window effect you described. Here's how you can implement the `strides` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import numpy as np def strides(T, window_size=50, step_size=10): # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the shape and strides for the new view shape = (num_windows, window_size) strides = (T.strides[0] * step_size, T.strides[0]) # Use as_strided to create the view windows = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return windows # Example usage T = np.arange(100) # Example array result = strides(T) print(result) |
1 2 3 4 5 6 | [[ 0 1 2 ... 47 48 49] [10 11 12 ... 57 58 59] [20 21 22 ... 67 68 69] [30 31 32 ... 77 78 79] [40 41 42 ... 87 88 89] [50 51 52 ... 97 98 99]] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import numpy as np def strides(T, window_size=50, step_size=10): # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the shape and strides for the new view shape = (num_windows, window_size) strides = (T.strides[0] * step_size, T.strides[0]) # Use as_strided to create the view windows = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return windows |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import numpy as np def strides(T, window_size=50, step_size=10): # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the shape and strides for the new view shape = (num_windows, window_size) strides = (T.strides[0] * step_size, T.strides[0]) # Use as_strided to create the view windows = np.lib.stride_tricks.as_strided(T, shape=shape, strides=strides) return windows answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Certainly! To achieve this, you can use NumPy's `as_strided` function to create a view of the array with overlapping strides. Below is a Python function `strides()` that takes a NumPy array `T` and returns the desired result:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the size of each sub-array and the step size sub_array_size = 50 step_size = 10 # Calculate the number of sub-arrays that can be created num_sub_arrays = ((len(T) - sub_array_size) // step_size) + 1 # Create the strides array strided_array = as_strided(T, shape=(num_sub_arrays, sub_array_size), strides=(T.strides[0] * step_size, T.strides[0])) return strided_array # Example usage if __name__ == "__main__": T = np.arange(100) # Example array result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the size of each sub-array and the step size sub_array_size = 50 step_size = 10 # Calculate the number of sub-arrays that can be created num_sub_arrays = ((len(T) - sub_array_size) // step_size) + 1 # Create the strides array strided_array = as_strided(T, shape=(num_sub_arrays, sub_array_size), strides=(T.strides[0] * step_size, T.strides[0])) return strided_array # Example usage if __name__ == "__main__": T = np.arange(100) # Example array result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the size of each sub-array and the step size sub_array_size = 50 step_size = 10 # Calculate the number of sub-arrays that can be created num_sub_arrays = ((len(T) - sub_array_size) // step_size) + 1 # Create the strides array strided_array = as_strided(T, shape=(num_sub_arrays, sub_array_size), strides=(T.strides[0] * step_size, T.strides[0])) return strided_array # Example usage if __name__ == "__main__": T = np.arange(100) # Example array result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Certainly! To achieve this, we'll use NumPy's ability to create views on the original array using strides. The idea is to create a 2D array where each row is a slice of the original array with a certain step size between the start points. Here's how you can implement the `strides` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np def strides(T, window_size=50, step_size=10): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the strided view strided_view = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) return strided_view # Example usage: T = np.arange(100) # Example array result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np def strides(T, window_size=50, step_size=10): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the strided view strided_view = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) return strided_view # Example usage: T = np.arange(100) # Example array result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import numpy as np def strides(T, window_size=50, step_size=10): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of windows num_windows = (len(T) - window_size) // step_size + 1 # Create the strided view strided_view = np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) return strided_view # Example usage: T = np.arange(100) # Example array result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve this, we can use the `as_strided` function from the `numpy.lib.stride_tricks` module. This function allows us to create a view into the array with a different shape and stride without copying the data. Here's how we can implement the `strides` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the length of each sub-array and the step size sub_array_length = 50 step_size = 10 # Calculate the number of sub-arrays we can create num_sub_arrays = (len(T) - sub_array_length) // step_size + 1 # Use as_strided to create the strided view strided_view = as_strided(T, shape=(num_sub_arrays, sub_array_length), strides=(T.strides[0] * step_size, T.strides[0])) return strided_view # Example usage T = np.arange(100) result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the length of each sub-array and the step size sub_array_length = 50 step_size = 10 # Calculate the number of sub-arrays we can create num_sub_arrays = (len(T) - sub_array_length) // step_size + 1 # Use as_strided to create the strided view strided_view = as_strided(T, shape=(num_sub_arrays, sub_array_length), strides=(T.strides[0] * step_size, T.strides[0])) return strided_view # Example usage T = np.arange(100) result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the length of each sub-array and the step size sub_array_length = 50 step_size = 10 # Calculate the number of sub-arrays we can create num_sub_arrays = (len(T) - sub_array_length) // step_size + 1 # Use as_strided to create the strided view strided_view = as_strided(T, shape=(num_sub_arrays, sub_array_length), strides=(T.strides[0] * step_size, T.strides[0])) return strided_view # Example usage T = np.arange(100) result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True