Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve this result using a strided approach, we can utilize the `as_strided` function from NumPy's `lib.stride_tricks` module. This function allows us to create a new view into the array `T` with a different shape and strides without actually copying the data. It's a powerful tool for efficient array manipulation, but it should be used with caution to avoid unexpected behavior or memory issues. Here's how you could implement the `strides` function to achieve the specified behavior:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Calculate the shape of the resultant array # Each window has a size of 50, starting at 0, 10, 20, ..., until we can't get a full window anymore n_windows = (T.size - 50) // 10 + 1 # Early exit if the input array is too small if n_windows <= 0: return np.array([]) # Or raise an error/message based on your use case # Original stride for each element in T original_stride = T.strides[0] # Calculate new shape and strides for the resultant view new_shape = (n_windows, 50) new_strides = (original_stride * 10, original_stride) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides, writeable=False) return strided_view # Example usage T = np.arange(100) # An array of 100 elements [0, 1, 2, ..., 99] result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Calculate the shape of the resultant array # Each window has a size of 50, starting at 0, 10, 20, ..., until we can't get a full window anymore n_windows = (T.size - 50) // 10 + 1 # Early exit if the input array is too small if n_windows <= 0: return np.array([]) # Or raise an error/message based on your use case # Original stride for each element in T original_stride = T.strides[0] # Calculate new shape and strides for the resultant view new_shape = (n_windows, 50) new_strides = (original_stride * 10, original_stride) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides, writeable=False) return strided_view # Example usage T = np.arange(100) # An array of 100 elements [0, 1, 2, ..., 99] result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Calculate the shape of the resultant array # Each window has a size of 50, starting at 0, 10, 20, ..., until we can't get a full window anymore n_windows = (T.size - 50) // 10 + 1 # Early exit if the input array is too small if n_windows <= 0: return np.array([]) # Or raise an error/message based on your use case # Original stride for each element in T original_stride = T.strides[0] # Calculate new shape and strides for the resultant view new_shape = (n_windows, 50) new_strides = (original_stride * 10, original_stride) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides, writeable=False) return strided_view # Example usage T = np.arange(100) # An array of 100 elements [0, 1, 2, ..., 99] result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve the desired functionality using the strided trick in NumPy, you can make use of the `as_strided` function from the `numpy.lib.stride_tricks` module. The idea is to create a view into the original array `T` with a new shape and strides such that it represents the desired slices `[T[0:50], T[10:60], T[20:70], ...]`. Here's how you could implement the `strides` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Define the parameters for the strided view window = 50 # the length of each stride step = 10 # the step between starts of consecutive windows # Calculate the number of strides that can fit into the array n_strides = ((T.shape[0] - window) // step) + 1 # Check if T is large enough for at least one stride if n_strides <= 0: raise ValueError("Array is too small for at least one stride.") # Calculate the new shape and strides for the strided view new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides) return strided_view # Example T = np.arange(100) # An example array of tokens result = strides(T) for r in result: print(r) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Define the parameters for the strided view window = 50 # the length of each stride step = 10 # the step between starts of consecutive windows # Calculate the number of strides that can fit into the array n_strides = ((T.shape[0] - window) // step) + 1 # Check if T is large enough for at least one stride if n_strides <= 0: raise ValueError("Array is too small for at least one stride.") # Calculate the new shape and strides for the strided view new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides) return strided_view # Example T = np.arange(100) # An example array of tokens result = strides(T) for r in result: print(r) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Define the parameters for the strided view window = 50 # the length of each stride step = 10 # the step between starts of consecutive windows # Calculate the number of strides that can fit into the array n_strides = ((T.shape[0] - window) // step) + 1 # Check if T is large enough for at least one stride if n_strides <= 0: raise ValueError("Array is too small for at least one stride.") # Calculate the new shape and strides for the strided view new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided view strided_view = as_strided(T, shape=new_shape, strides=new_strides) return strided_view # Example T = np.arange(100) # An example array of tokens result = strides(T) for r in result: print(r) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve the task described, we will use the NumPy library's `as_strided` function from the `numpy.lib.stride_tricks` module. The `as_strided` function allows us to create a new view into the input array `T` with different shape and strides, without copying the data. This way, we can create the desired "strided" view of the array. First, ensure you have NumPy installed in your environment. You can install it using pip if you haven't already:
1 | pip install numpy |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, stride=10): """ Create a strided version of array T. Parameters: - T: numpy array, the input tokens. - window: int, the length of each sub-array in the result. - stride: int, the step between the start of each sub-array. Returns: - A numpy array containing strided sub-arrays of T. """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the shape and strides for the desired output num_strides = (T.shape[0] - window) // stride + 1 shape = (num_strides, window) strides = (T.strides[0] * stride, T.strides[0]) # Create and return the strided version of T strided_T = as_strided(T, shape=shape, strides=strides) return strided_T # Example usage: T = np.arange(100) # Example array of tokens result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, stride=10): """ Create a strided version of array T. Parameters: - T: numpy array, the input tokens. - window: int, the length of each sub-array in the result. - stride: int, the step between the start of each sub-array. Returns: - A numpy array containing strided sub-arrays of T. """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the shape and strides for the desired output num_strides = (T.shape[0] - window) // stride + 1 shape = (num_strides, window) strides = (T.strides[0] * stride, T.strides[0]) # Create and return the strided version of T strided_T = as_strided(T, shape=shape, strides=strides) return strided_T |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, stride=10): """ Create a strided version of array T. Parameters: - T: numpy array, the input tokens. - window: int, the length of each sub-array in the result. - stride: int, the step between the start of each sub-array. Returns: - A numpy array containing strided sub-arrays of T. """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the shape and strides for the desired output num_strides = (T.shape[0] - window) // stride + 1 shape = (num_strides, window) strides = (T.strides[0] * stride, T.strides[0]) # Create and return the strided version of T strided_T = as_strided(T, shape=shape, strides=strides) return strided_T answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve the task of generating slices of a given numpy array with strides using the "strided trick", you can utilize numpy's `as_strided` function from the `numpy.lib.stride_tricks` module. The `as_strided` function allows you to create a new view into the array with a different shape and strides without copying the data. However, it's important to use this function with caution, as it can easily lead to out-of-bounds memory access if not used correctly, because it does not check the boundaries of the strides and shapes you provide. Below is a function `strides()` that takes a numpy array `T` as input and returns the requested slices `[T[0:50], T[10:60], T[20:70], ...]` until the end of the array, considering the array might not end exactly on a boundary of the slicing operation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, step=10): # Calculate the number of strides that fit in the array n_strides = 1 + (len(T) - window) // step # Safety check to avoid empty results if n_strides <= 0: return np.array([]) # Calculate the new shape and strides new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Use as_strided to create the strided array strided_array = as_strided(T, shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # A numpy array of 100 elements result = strides(T) # To demonstrate the resulting slices for slice_ in result: print(slice_) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, step=10): # Calculate the number of strides that fit in the array n_strides = 1 + (len(T) - window) // step # Safety check to avoid empty results if n_strides <= 0: return np.array([]) # Calculate the new shape and strides new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Use as_strided to create the strided array strided_array = as_strided(T, shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # A numpy array of 100 elements result = strides(T) # To demonstrate the resulting slices for slice_ in result: print(slice_) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T, window=50, step=10): # Calculate the number of strides that fit in the array n_strides = 1 + (len(T) - window) // step # Safety check to avoid empty results if n_strides <= 0: return np.array([]) # Calculate the new shape and strides new_shape = (n_strides, window) new_strides = (T.strides[0] * step, T.strides[0]) # Use as_strided to create the strided array strided_array = as_strided(T, shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # A numpy array of 100 elements result = strides(T) # To demonstrate the resulting slices for slice_ in result: print(slice_) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
To achieve the task of generating sub-arrays using the strided trick with numpy, we can make use of the numpy.lib.stride_tricks.as_strided function. This function allows us to create a view into the array with a given shape and strides, without copying the data. However, it requires careful calculation of the new shape and strides to ensure we are accessing the data correctly and not going out of bounds. Here's a Python function `strides()` that takes a numpy array `T` and generates sub-arrays according to the pattern you've specified ([T[0:50], T[10:60], T[20:70], ...]). Note that the function also ensures it doesn't attempt to create a sub-array that goes beyond the bounds of the original array.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the window and step sizes window_size = 50 step = 10 # Calculate the number of strides we can take within the array bounds num_strides = 1 + (len(T) - window_size) // step if (len(T) - window_size) % step != 0 and (len(T) - window_size) > 0: num_strides += 1 # Handle partial stride at the end if it exists # Calculate the new shape and strides for the output array new_shape = (num_strides, window_size) new_strides = (T.strides[0] * step, T.strides[0]) # Use stride_tricks to create the strided array # Ensure that we are not going out of bounds by limiting the view max_length = min(len(T), new_shape[0] * step + window_size) strided_array = as_strided(T[:max_length], shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # Create an example numpy array result = strides(T) print(result) # Validate the first and last sub-arrays print(result[0]) # Should be equivalent to T[0:50] print(result[-1]) # The last sub-array that fits the pattern without going out of bounds |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the window and step sizes window_size = 50 step = 10 # Calculate the number of strides we can take within the array bounds num_strides = 1 + (len(T) - window_size) // step if (len(T) - window_size) % step != 0 and (len(T) - window_size) > 0: num_strides += 1 # Handle partial stride at the end if it exists # Calculate the new shape and strides for the output array new_shape = (num_strides, window_size) new_strides = (T.strides[0] * step, T.strides[0]) # Use stride_tricks to create the strided array # Ensure that we are not going out of bounds by limiting the view max_length = min(len(T), new_shape[0] * step + window_size) strided_array = as_strided(T[:max_length], shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # Create an example numpy array result = strides(T) print(result) # Validate the first and last sub-arrays print(result[0]) # Should be equivalent to T[0:50] print(result[-1]) # The last sub-array that fits the pattern without going out of bounds |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import numpy as np from numpy.lib.stride_tricks import as_strided def strides(T): # Define the window and step sizes window_size = 50 step = 10 # Calculate the number of strides we can take within the array bounds num_strides = 1 + (len(T) - window_size) // step if (len(T) - window_size) % step != 0 and (len(T) - window_size) > 0: num_strides += 1 # Handle partial stride at the end if it exists # Calculate the new shape and strides for the output array new_shape = (num_strides, window_size) new_strides = (T.strides[0] * step, T.strides[0]) # Use stride_tricks to create the strided array # Ensure that we are not going out of bounds by limiting the view max_length = min(len(T), new_shape[0] * step + window_size) strided_array = as_strided(T[:max_length], shape=new_shape, strides=new_strides) return strided_array # Example usage T = np.arange(100) # Create an example numpy array result = strides(T) print(result) # Validate the first and last sub-arrays print(result[0]) # Should be equivalent to T[0:50] print(result[-1]) # The last sub-array that fits the pattern without going out of bounds answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]
All tests passed
Testing if the previous output contains the string All tests passed
: True