Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes an array of tokens and returns a list of overlapping sub-arrays using the strided trick. Args: T: A NumPy array of tokens. window_size: The size of each sub-array (default: 50). step_size: The step size between the start indices of consecutive sub-arrays (default: 10). Returns: A list of NumPy arrays, where each array is a sub-array of T. """ stride_shape = ((len(T) - window_size) // step_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, shape=stride_shape, strides=strides) # Example usage: tokens = np.array(["token_" + str(i) for i in range(100)]) result = strides(tokens) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes an array of tokens and returns a list of overlapping sub-arrays using the strided trick. Args: T: A NumPy array of tokens. window_size: The size of each sub-array (default: 50). step_size: The step size between the start indices of consecutive sub-arrays (default: 10). Returns: A list of NumPy arrays, where each array is a sub-array of T. """ stride_shape = ((len(T) - window_size) // step_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, shape=stride_shape, strides=strides) # Example usage: tokens = np.array(["token_" + str(i) for i in range(100)]) result = strides(tokens) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes an array of tokens and returns a list of overlapping sub-arrays using the strided trick. Args: T: A NumPy array of tokens. window_size: The size of each sub-array (default: 50). step_size: The step size between the start indices of consecutive sub-arrays (default: 10). Returns: A list of NumPy arrays, where each array is a sub-array of T. """ stride_shape = ((len(T) - window_size) // step_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, shape=stride_shape, strides=strides) # Example usage: tokens = np.array(["token_" + str(i) for i in range(100)]) result = strides(tokens) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[['token_0' 'token_1' 'token_2' 'token_3' 'token_4' 'token_5' 'token_6'
'token_7' 'token_8' 'token_9' 'token_10' 'token_11' 'token_12'
'token_13' 'token_14' 'token_15' 'token_16' 'token_17' 'token_18'
'token_19' 'token_20' 'token_21' 'token_22' 'token_23' 'token_24'
'token_25' 'token_26' 'token_27' 'token_28' 'token_29' 'token_30'
'token_31' 'token_32' 'token_33' 'token_34' 'token_35' 'token_36'
'token_37' 'token_38' 'token_39' 'token_40' 'token_41' 'token_42'
'token_43' 'token_44' 'token_45' 'token_46' 'token_47' 'token_48'
'token_49']
['token_10' 'token_11' 'token_12' 'token_13' 'token_14' 'token_15'
'token_16' 'token_17' 'token_18' 'token_19' 'token_20' 'token_21'
'token_22' 'token_23' 'token_24' 'token_25' 'token_26' 'token_27'
'token_28' 'token_29' 'token_30' 'token_31' 'token_32' 'token_33'
'token_34' 'token_35' 'token_36' 'token_37' 'token_38' 'token_39'
'token_40' 'token_41' 'token_42' 'token_43' 'token_44' 'token_45'
'token_46' 'token_47' 'token_48' 'token_49' 'token_50' 'token_51'
'token_52' 'token_53' 'token_54' 'token_55' 'token_56' 'token_57'
'token_58' 'token_59']
['token_20' 'token_21' 'token_22' 'token_23' 'token_24' 'token_25'
'token_26' 'token_27' 'token_28' 'token_29' 'token_30' 'token_31'
'token_32' 'token_33' 'token_34' 'token_35' 'token_36' 'token_37'
'token_38' 'token_39' 'token_40' 'token_41' 'token_42' 'token_43'
'token_44' 'token_45' 'token_46' 'token_47' 'token_48' 'token_49'
'token_50' 'token_51' 'token_52' 'token_53' 'token_54' 'token_55'
'token_56' 'token_57' 'token_58' 'token_59' 'token_60' 'token_61'
'token_62' 'token_63' 'token_64' 'token_65' 'token_66' 'token_67'
'token_68' 'token_69']
['token_30' 'token_31' 'token_32' 'token_33' 'token_34' 'token_35'
'token_36' 'token_37' 'token_38' 'token_39' 'token_40' 'token_41'
'token_42' 'token_43' 'token_44' 'token_45' 'token_46' 'token_47'
'token_48' 'token_49' 'token_50' 'token_51' 'token_52' 'token_53'
'token_54' 'token_55' 'token_56' 'token_57' 'token_58' 'token_59'
'token_60' 'token_61' 'token_62' 'token_63' 'token_64' 'token_65'
'token_66' 'token_67' 'token_68' 'token_69' 'token_70' 'token_71'
'token_72' 'token_73' 'token_74' 'token_75' 'token_76' 'token_77'
'token_78' 'token_79']
['token_40' 'token_41' 'token_42' 'token_43' 'token_44' 'token_45'
'token_46' 'token_47' 'token_48' 'token_49' 'token_50' 'token_51'
'token_52' 'token_53' 'token_54' 'token_55' 'token_56' 'token_57'
'token_58' 'token_59' 'token_60' 'token_61' 'token_62' 'token_63'
'token_64' 'token_65' 'token_66' 'token_67' 'token_68' 'token_69'
'token_70' 'token_71' 'token_72' 'token_73' 'token_74' 'token_75'
'token_76' 'token_77' 'token_78' 'token_79' 'token_80' 'token_81'
'token_82' 'token_83' 'token_84' 'token_85' 'token_86' 'token_87'
'token_88' 'token_89']
['token_50' 'token_51' 'token_52' 'token_53' 'token_54' 'token_55'
'token_56' 'token_57' 'token_58' 'token_59' 'token_60' 'token_61'
'token_62' 'token_63' 'token_64' 'token_65' 'token_66' 'token_67'
'token_68' 'token_69' 'token_70' 'token_71' 'token_72' 'token_73'
'token_74' 'token_75' 'token_76' 'token_77' 'token_78' 'token_79'
'token_80' 'token_81' 'token_82' 'token_83' 'token_84' 'token_85'
'token_86' 'token_87' 'token_88' 'token_89' 'token_90' 'token_91'
'token_92' 'token_93' 'token_94' 'token_95' 'token_96' 'token_97'
'token_98' 'token_99']]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a NumPy array and returns a list of overlapping subarrays using the strided trick. Args: T: A 1-dimensional NumPy array of tokens. window_size: The desired size of each subarray (default: 50). step_size: The stride or step size between the starting indices of consecutive subarrays (default: 10). Returns: A list of NumPy arrays, where each array is a subarray of T with the specified window_size and overlapping by (window_size - step_size) elements. """ stride_shape = (len(T) - window_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, stride_shape, strides) # Example usage T = np.array(range(100)) result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a NumPy array and returns a list of overlapping subarrays using the strided trick. Args: T: A 1-dimensional NumPy array of tokens. window_size: The desired size of each subarray (default: 50). step_size: The stride or step size between the starting indices of consecutive subarrays (default: 10). Returns: A list of NumPy arrays, where each array is a subarray of T with the specified window_size and overlapping by (window_size - step_size) elements. """ stride_shape = (len(T) - window_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, stride_shape, strides) # Example usage T = np.array(range(100)) result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a NumPy array and returns a list of overlapping subarrays using the strided trick. Args: T: A 1-dimensional NumPy array of tokens. window_size: The desired size of each subarray (default: 50). step_size: The stride or step size between the starting indices of consecutive subarrays (default: 10). Returns: A list of NumPy arrays, where each array is a subarray of T with the specified window_size and overlapping by (window_size - step_size) elements. """ stride_shape = (len(T) - window_size + 1, window_size) strides = (T.strides[0] * step_size, T.strides[0]) return np.lib.stride_tricks.as_strided(T, stride_shape, strides) # Example usage T = np.array(range(100)) result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 ... 47
48 49]
[ 10 11 12 ... 57
58 59]
[ 20 21 22 ... 67
68 69]
...
[139739890812848 139739890816048 139739892598256 ... 139739892184944
139739890916528 139739890924832]
[139739892184944 139739890916528 139739890917440 ... 139739891961168
139739890918544 139739891961168]
[139739892184944 139739892184944 139739890849008 ... 139739892184944
139739892184816 139739892184944]]
Traceback (most recent call last):
File "/usr/src/app/main.py", line 35, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got (51, 50) instead of (6, 50)
Testing if the previous output contains the string All tests passed
: False
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function uses the strided trick to efficiently extract overlapping windows from an array. Args: T: A NumPy array of tokens. window_size: The desired size of each window. step_size: The stride between the start indices of consecutive windows. Returns: A list of NumPy arrays, where each array represents a window of tokens. """ # Calculate the number of possible windows num_windows = (len(T) - window_size) // step_size + 1 # Use as_strided to create a view of the array with overlapping windows # Note: This doesn't copy data, just changes how we view it return np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage: tokens = np.array(["This", "is", "a", "test", "sentence", "with", "overlapping", "windows", "example"]) windows = strides(tokens, window_size=3, step_size=2) print(windows) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function uses the strided trick to efficiently extract overlapping windows from an array. Args: T: A NumPy array of tokens. window_size: The desired size of each window. step_size: The stride between the start indices of consecutive windows. Returns: A list of NumPy arrays, where each array represents a window of tokens. """ # Calculate the number of possible windows num_windows = (len(T) - window_size) // step_size + 1 # Use as_strided to create a view of the array with overlapping windows # Note: This doesn't copy data, just changes how we view it return np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage: tokens = np.array(["This", "is", "a", "test", "sentence", "with", "overlapping", "windows", "example"]) windows = strides(tokens, window_size=3, step_size=2) print(windows) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function uses the strided trick to efficiently extract overlapping windows from an array. Args: T: A NumPy array of tokens. window_size: The desired size of each window. step_size: The stride between the start indices of consecutive windows. Returns: A list of NumPy arrays, where each array represents a window of tokens. """ # Calculate the number of possible windows num_windows = (len(T) - window_size) // step_size + 1 # Use as_strided to create a view of the array with overlapping windows # Note: This doesn't copy data, just changes how we view it return np.lib.stride_tricks.as_strided( T, shape=(num_windows, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage: tokens = np.array(["This", "is", "a", "test", "sentence", "with", "overlapping", "windows", "example"]) windows = strides(tokens, window_size=3, step_size=2) print(windows) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[['This' 'is' 'a']
['a' 'test' 'sentence']
['sentence' 'with' 'overlapping']
['overlapping' 'windows' 'example']]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a numpy array and returns a list of overlapping subarrays using the strided trick. Args: T (np.ndarray): The input array. window_size (int): The size of each subarray. step_size (int): The step size between the start of each subarray. Returns: list: A list of overlapping subarrays. """ # Calculate the number of possible strides stride_count = 1 + (len(T) - window_size) // step_size # Use as_strided to create a view of the array with overlapping subarrays return np.lib.stride_tricks.as_strided( T, shape=(stride_count, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage T = np.arange(100) result = strides(T) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a numpy array and returns a list of overlapping subarrays using the strided trick. Args: T (np.ndarray): The input array. window_size (int): The size of each subarray. step_size (int): The step size between the start of each subarray. Returns: list: A list of overlapping subarrays. """ # Calculate the number of possible strides stride_count = 1 + (len(T) - window_size) // step_size # Use as_strided to create a view of the array with overlapping subarrays return np.lib.stride_tricks.as_strided( T, shape=(stride_count, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage T = np.arange(100) result = strides(T) print(result) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np def strides(T, window_size=50, step_size=10): """ This function takes a numpy array and returns a list of overlapping subarrays using the strided trick. Args: T (np.ndarray): The input array. window_size (int): The size of each subarray. step_size (int): The step size between the start of each subarray. Returns: list: A list of overlapping subarrays. """ # Calculate the number of possible strides stride_count = 1 + (len(T) - window_size) // step_size # Use as_strided to create a view of the array with overlapping subarrays return np.lib.stride_tricks.as_strided( T, shape=(stride_count, window_size), strides=(T.strides[0] * step_size, T.strides[0]) ) # Example usage T = np.arange(100) result = strides(T) print(result) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np def strides(T, window_size=50, step_size=10): """ Extracts overlapping windows from an array using the strided trick. Args: T: The input array (numpy array). window_size: The size of each window. step_size: The step size between consecutive windows. Returns: A list of numpy arrays, each representing a window of the input array. """ stride_shape = (T.size - window_size + step_size) // step_size return np.lib.stride_tricks.as_strided( T, shape=(stride_shape, window_size), strides=(T.strides[0] * step_size, T.strides[0]), ) # Example usage: T = np.arange(100) windows = strides(T) print(windows) |
1 2 | import numpy as np |
1 2 3 | def strides(T, window_size=50, step_size=10): # ... function implementation ... |
1 2 | stride_shape = (T.size - window_size + step_size) // step_size |
1 2 3 4 5 6 | return np.lib.stride_tricks.as_strided( T, shape=(stride_shape, window_size), strides=(T.strides[0] * step_size, T.strides[0]), ) |
1 2 3 4 | T = np.arange(100) windows = strides(T) print(windows) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import numpy as np def strides(T, window_size=50, step_size=10): """ Extracts overlapping windows from an array using the strided trick. Args: T: The input array (numpy array). window_size: The size of each window. step_size: The step size between consecutive windows. Returns: A list of numpy arrays, each representing a window of the input array. """ stride_shape = (T.size - window_size + step_size) // step_size return np.lib.stride_tricks.as_strided( T, shape=(stride_shape, window_size), strides=(T.strides[0] * step_size, T.strides[0]), ) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np def strides(T, window_size=50, step_size=10): """ Extracts overlapping windows from an array using the strided trick. Args: T: The input array (numpy array). window_size: The size of each window. step_size: The step size between consecutive windows. Returns: A list of numpy arrays, each representing a window of the input array. """ stride_shape = (T.size - window_size + step_size) // step_size return np.lib.stride_tricks.as_strided( T, shape=(stride_shape, window_size), strides=(T.strides[0] * step_size, T.strides[0]), ) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True