Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Here's a Python function that uses NumPy's strided trick to create overlapping subarrays from the input array, as per your specification:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of subarrays n_subarrays = max(0, (len(T) - 50) // 10 + 1) # If there are no subarrays possible, return an empty list if n_subarrays == 0: return [] # Create a view of the array with the desired shape and strides strided = np.lib.stride_tricks.as_strided( T, shape=(n_subarrays, 50), strides=(T.strides[0] * 10, T.strides[0]) ) # Convert the strided view to a list of subarrays return [subarray for subarray in strided] |
1 2 3 4 5 6 7 8 | import numpy as np T = np.arange(100) # Example input array result = strides(T) print(len(result)) # Number of subarrays print(result[0]) # First subarray print(result[-1]) # Last subarray |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import numpy as np def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of subarrays n_subarrays = max(0, (len(T) - 50) // 10 + 1) # If there are no subarrays possible, return an empty list if n_subarrays == 0: return [] # Create a view of the array with the desired shape and strides strided = np.lib.stride_tricks.as_strided( T, shape=(n_subarrays, 50), strides=(T.strides[0] * 10, T.strides[0]) ) # Convert the strided view to a list of subarrays return [subarray for subarray in strided] |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import numpy as np def strides(T): # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of subarrays n_subarrays = max(0, (len(T) - 50) // 10 + 1) # If there are no subarrays possible, return an empty list if n_subarrays == 0: return [] # Create a view of the array with the desired shape and strides strided = np.lib.stride_tricks.as_strided( T, shape=(n_subarrays, 50), strides=(T.strides[0] * 10, T.strides[0]) ) # Convert the strided view to a list of subarrays return [subarray for subarray in strided] answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 29, in <module>
answer = strides(np.arange(100)).shape
AttributeError: 'list' object has no attribute 'shape'
Testing if the previous output contains the string All tests passed
: False
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Here's a Python function that uses NumPy's strided trick to create overlapping subarrays from an input array of tokens:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between subarrays (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays num_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (num_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray:", result[0]) print("Second subarray:", result[1]) print("Third subarray:", result[2]) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between subarrays (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays num_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (num_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray:", result[0]) print("Second subarray:", result[1]) print("Third subarray:", result[2]) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between subarrays (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays num_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (num_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray:", result[0]) print("Second subarray:", result[1]) print("Third subarray:", result[2]) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
Shape of result: (6, 50)
First subarray: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
Second subarray: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
Third subarray: [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Here's a Python function that uses NumPy's strided trick to create the desired output from an input array of tokens:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import numpy as np def strides(T, window_size=50, step=10): """ Given an array of tokens T, return strided windows of the array. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each window (default: 50) step (int): Step size between windows (default: 10) Returns: numpy.ndarray: Array of strided windows """ # Ensure T is a numpy array T = np.array(T) # Calculate the number of valid windows num_windows = max(0, (T.size - window_size) // step + 1) # Use stride_tricks to create the windowed view return np.lib.stride_tricks.sliding_window_view(T, window_shape=window_size)[::step][:num_windows] # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided windows windows = strides(tokens) # Print the result print(f"Number of windows: {len(windows)}") print("First few windows:") for i, window in enumerate(windows[:5]): print(f"Window {i}: {window}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import numpy as np def strides(T, window_size=50, step=10): """ Given an array of tokens T, return strided windows of the array. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each window (default: 50) step (int): Step size between windows (default: 10) Returns: numpy.ndarray: Array of strided windows """ # Ensure T is a numpy array T = np.array(T) # Calculate the number of valid windows num_windows = max(0, (T.size - window_size) // step + 1) # Use stride_tricks to create the windowed view return np.lib.stride_tricks.sliding_window_view(T, window_shape=window_size)[::step][:num_windows] # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided windows windows = strides(tokens) # Print the result print(f"Number of windows: {len(windows)}") print("First few windows:") for i, window in enumerate(windows[:5]): print(f"Window {i}: {window}") |
Testing if the previous output contains the string as_strided
: False
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import numpy as np def strides(T, window_size=50, step=10): """ Given an array of tokens T, return strided windows of the array. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each window (default: 50) step (int): Step size between windows (default: 10) Returns: numpy.ndarray: Array of strided windows """ # Ensure T is a numpy array T = np.array(T) # Calculate the number of valid windows num_windows = max(0, (T.size - window_size) // step + 1) # Use stride_tricks to create the windowed view return np.lib.stride_tricks.sliding_window_view(T, window_shape=window_size)[::step][:num_windows] # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided windows windows = strides(tokens) # Print the result print(f"Number of windows: {len(windows)}") print("First few windows:") for i, window in enumerate(windows[:5]): print(f"Window {i}: {window}") answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Number of windows: 6
First few windows:
Window 0: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
Window 1: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
Window 2: [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
Window 3: [30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
Window 4: [40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Here's a Python function that implements the strided trick to create overlapping subarrays from a given numpy array of tokens:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array T using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between the start of each subarray (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of the result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):") print(result[0]) print("\nSecond subarray (T[10:60]):") print(result[1]) print("\nThird subarray (T[20:70]):") print(result[2]) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array T using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between the start of each subarray (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of the result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):") print(result[0]) print("\nSecond subarray (T[10:60]):") print(result[1]) print("\nThird subarray (T[20:70]):") print(result[2]) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | import numpy as np def strides(T, window_size=50, step=10): """ Create overlapping subarrays from the input array T using the strided trick. Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default: 50) step (int): Step size between the start of each subarray (default: 10) Returns: numpy.ndarray: Array of overlapping subarrays """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // step + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * step, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array of tokens tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of the result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):") print(result[0]) print("\nSecond subarray (T[10:60]):") print(result[1]) print("\nThird subarray (T[20:70]):") print(result[2]) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
Shape of the result: (6, 50)
First subarray (T[0:50]):
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
Second subarray (T[10:60]):
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
Third subarray (T[20:70]):
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Write a function strides() that given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20: 70] ... ]
Here's a Python function that implements the strided trick to create overlapping subarrays from a given numpy array of tokens:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import numpy as np def strides(T, window_size=50, stride=10): """ Given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20:70], ...] Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default 50) stride (int): Step size between start of each subarray (default 10) Returns: numpy.ndarray: A 2D array where each row is a subarray """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // stride + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * stride, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):", result[0]) print("Second subarray (T[10:60]):", result[1]) print("Third subarray (T[20:70]):", result[2]) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import numpy as np def strides(T, window_size=50, stride=10): """ Given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20:70], ...] Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default 50) stride (int): Step size between start of each subarray (default 10) Returns: numpy.ndarray: A 2D array where each row is a subarray """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // stride + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * stride, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):", result[0]) print("Second subarray (T[10:60]):", result[1]) print("Third subarray (T[20:70]):", result[2]) |
Testing if the previous output contains the string as_strided
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | import numpy as np def strides(T, window_size=50, stride=10): """ Given an array of tokens T as numpy array, using strided trick, returns [T[0:50], T[10:60], T[20:70], ...] Parameters: T (numpy.ndarray): Input array of tokens window_size (int): Size of each subarray (default 50) stride (int): Step size between start of each subarray (default 10) Returns: numpy.ndarray: A 2D array where each row is a subarray """ # Ensure T is a numpy array T = np.asarray(T) # Calculate the number of valid subarrays n_subarrays = max(0, (T.size - window_size) // stride + 1) # Create a new shape for the strided array new_shape = (n_subarrays, window_size) # Calculate the strides for the new array new_strides = (T.strides[0] * stride, T.strides[0]) # Create the strided array strided = np.lib.stride_tricks.as_strided(T, shape=new_shape, strides=new_strides) return strided # Example usage: if __name__ == "__main__": # Create a sample array tokens = np.arange(100) # Get the strided subarrays result = strides(tokens) # Print the result print(result) print(f"Shape of result: {result.shape}") # Verify a few subarrays print("\nFirst subarray (T[0:50]):", result[0]) print("Second subarray (T[10:60]):", result[1]) print("Third subarray (T[20:70]):", result[2]) answer = strides(np.arange(100)).shape expected = (6, 50) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = strides(np.arange(100)).sum() expected = 14850 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
[20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79]
[40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89]
[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99]]
Shape of result: (6, 50)
First subarray (T[0:50]): [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49]
Second subarray (T[10:60]): [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59]
Third subarray (T[20:70]): [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69]
All tests passed
Testing if the previous output contains the string All tests passed
: True