What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
1.0
Testing if the previous output contains the string -0.03
: False
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
0.0
Testing if the previous output contains the string -0.03
: False
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
The function will print the gradient of the tensor `g` after applying the `diff_round` function and calculating the loss.
Testing if the previous output contains the string -0.03
: False
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
This function will print the gradient sum of the tensor `g` after applying the `diff_round` function and performing backpropagation. The gradient sum will be calculated based on the loss obtained from the `diff_round` function.
Testing if the previous output contains the string -0.03
: False
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
What will this function print
1 2 3 4 5 6 7 8 9 10 11 12 | def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) |
1.0
Testing if the previous output contains the string -0.03
: False