Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

To code golf this function and make it significantly shorter while maintaining the same functionality, we can take several steps to reduce the overall byte count. This includes removing unnecessary variables, condensing loops and operations, and utilizing bitwise operations more efficiently. Here is a condensed version of your function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
int count(){
    int c=0;
    for(int i=0;i<1<<16;i++){
        long long u=i&0xf|(i&0xf0)<<4|(i&0xf00)<<8|(i&0xf000)<<12,a=u,t;
        for(int r=1;r<7;r++)for(int j=1;j<7;j++){
            t=r*8+j;
            if((u>>t&1)&&!((u>>t-1&1)+(u>>t+1&1)+(u>>t-8&1)+(u>>t+8&1)))a&=~(1LL<<t);
        }
        c+=(u==a);
    }
    return c;
}
This version aggressively shortens variable names, removes the predefined `ROWS` and `COLS` constants by directly using their values, and combines several operations into single lines. It directly encodes the logic without explicitly defining all the neighbor positions by computing them inline within the conditionals. It also omits the `unsigned int` type for the `array` variable, relying on default `int` behavior (though for clarity and correctness in dealing with large integers, keeping `long long` is essential). Keep in mind, code golfing often sacrifices readability and maintainability for brevity, which is evident in the condensed version presented here.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
int count(){
    int c=0;
    for(int i=0;i<1<<16;i++){
        long long u=i&0xf|(i&0xf0)<<4|(i&0xf00)<<8|(i&0xf000)<<12,a=u,t;
        for(int r=1;r<7;r++)for(int j=1;j<7;j++){
            t=r*8+j;
            if((u>>t&1)&&!((u>>t-1&1)+(u>>t+1&1)+(u>>t-8&1)+(u>>t+8&1)))a&=~(1LL<<t);
        }
        c+=(u==a);
    }
    return c;
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
int count(){
    int c=0;
    for(int i=0;i<1<<16;i++){
        long long u=i&0xf|(i&0xf0)<<4|(i&0xf00)<<8|(i&0xf000)<<12,a=u,t;
        for(int r=1;r<7;r++)for(int j=1;j<7;j++){
            t=r*8+j;
            if((u>>t&1)&&!((u>>t-1&1)+(u>>t+1&1)+(u>>t-8&1)+(u>>t+8&1)))a&=~(1LL<<t);
        }
        c+=(u==a);
    }
    return c;
}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 40888 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False

Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

Here's a significantly shortened version of your function. This version maintains the original logic but simplifies the code significantly by removing unnecessary variables and compacting the operations into fewer lines. This version is well under 300 bytes (not counting whitespace):

1
2
3
4
5
6
7
8
9
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned a = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), t = a, p;
        for (int j = 9; j < 55; j+=8) for (p = a>>j&1; p && !(a>>(j-1)&1) && !(a>>(j+1)&1) && !(a>>(j-8)&1) && !(a>>(j+8)&1); p=0) a &= ~(1ULL << j);
        c += (t == a);
    }
    return c;
}
This refactored version directly translates the bit manipulation and iteration logic into a more compact form. It maintains the core functionality: - Iterating over 16-bit integers to generate initial patterns. - Checking each cell (except the edges) if it should be turned off based on its neighbors. - Counting configurations that remain unchanged after applying the rule. Remember, the essence of code golf is to reduce the number of bytes while preserving functionality, sometimes at the cost of readability and maintainability.

Extract Code

I extracted the following code from that output:

1
2
3
4
5
6
7
8
9
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned a = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), t = a, p;
        for (int j = 9; j < 55; j+=8) for (p = a>>j&1; p && !(a>>(j-1)&1) && !(a>>(j+1)&1) && !(a>>(j-8)&1) && !(a>>(j+8)&1); p=0) a &= ~(1ULL << j);
        c += (t == a);
    }
    return c;
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned a = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), t = a, p;
        for (int j = 9; j < 55; j+=8) for (p = a>>j&1; p && !(a>>(j-1)&1) && !(a>>(j+1)&1) && !(a>>(j-8)&1) && !(a>>(j+8)&1); p=0) a &= ~(1ULL << j);
        c += (t == a);
    }
    return c;
}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 53760 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False

Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

Here's a condensed version of the provided function `count`, which retains the original functionality but is significantly shorter, fitting the requirement of being under 300 bytes (not counting whitespace):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long u = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), v = u;
        for (int p = 9; p < 57; p+=8)
            for (int q = p; q < p+6; q++)
                if (((v>>q)&1) && !((v>>(q-1))&1) && !((v>>(q+1))&1) && !((v>>(q-8))&1) && !((v>>(q+8))&1)) u &= ~(1LL<<q);
        c += (u == v);
    }
    return c;
}
This solution preserves the core logic of the original function, reducing the number of lines and intermediate variables, and condensing the bitwise operations. It iterates through the same range of values, constructs the `array` (renamed to `u` here for brevity) in a similar manner, and applies the same condition to determine if the value of `u` remains unchanged after attempting to "clear" cells based on the surrounding cells' values. The counter `c` is incremented under the same condition as before, and the final count is returned.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long u = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), v = u;
        for (int p = 9; p < 57; p+=8)
            for (int q = p; q < p+6; q++)
                if (((v>>q)&1) && !((v>>(q-1))&1) && !((v>>(q+1))&1) && !((v>>(q-8))&1) && !((v>>(q+8))&1)) u &= ~(1LL<<q);
        c += (u == v);
    }
    return c;
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long u = ((i & 0xf) << 9) | ((i & 0xf0) << 12) | ((i & 0xf00) << 15) | ((i & 0xf000) << 18), v = u;
        for (int p = 9; p < 57; p+=8)
            for (int q = p; q < p+6; q++)
                if (((v>>q)&1) && !((v>>(q-1))&1) && !((v>>(q+1))&1) && !((v>>(q-8))&1) && !((v>>(q+8))&1)) u &= ~(1LL<<q);
        c += (u == v);
    }
    return c;
}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 24064 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False

Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long int a = (i & 0xf) * 0x204081, t = a;
        for (int p = 9; p < 57; p += 8)
            if (((t >> p) & 1) && !((t >> (p - 1)) & 1) && !((t >> (p + 1)) & 1) && !((t >> (p - 8)) & 1) && !((t >> (p + 8)) & 1))
                a &= ~(1LL << p);
        c += (a == t);
    }
    return c;
}
This code snippet is a significantly shortened version of the original function. It assumes the same logic but uses a more compact approach to calculate the transformed `array` and to iterate through each bit position for checking and updating the cell conditions. The original verbose bit mask manipulations and neighbor sum calculations are replaced with a more streamlined approach, directly focusing on the critical operations required to determine if the initial configuration equals the final configuration after applying the rules.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long int a = (i & 0xf) * 0x204081, t = a;
        for (int p = 9; p < 57; p += 8)
            if (((t >> p) & 1) && !((t >> (p - 1)) & 1) && !((t >> (p + 1)) & 1) && !((t >> (p - 8)) & 1) && !((t >> (p + 8)) & 1))
                a &= ~(1LL << p);
        c += (a == t);
    }
    return c;
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int count() {
    int c = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long int a = (i & 0xf) * 0x204081, t = a;
        for (int p = 9; p < 57; p += 8)
            if (((t >> p) & 1) && !((t >> (p - 1)) & 1) && !((t >> (p + 1)) & 1) && !((t >> (p - 8)) & 1) && !((t >> (p + 8)) & 1))
                a &= ~(1LL << p);
        c += (a == t);
    }
    return c;
}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 40960 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False

Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

Here's a condensed version of the function `count` that fits within the <300 bytes constraint while maintaining the original functionality:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c=0;
    for (int i=0;i<1<<16;i++) {
        long long u=i&0xf|i>>4&0xf0|i>>8&0xf00|i>>12&0xf000,u0=u,t;
        for(int j=1;j<7;j++)
            for(int k=1;k<7;k++)
                t=1LL<<(j*8+k),u&=~(t*((u&t)&&!((u>>(j*8+k-1)&1)+(u>>(j*8+k+1)&1)+(u>>((j-1)*8+k)&1)+(u>>((j+6)*8+k)&1))));
        c+=u==u0;
    }
    return c;
}
This code snippet strives to achieve the same functionality as the original by condensing variable declarations, combining for-loop conditions, and using bitwise operations and shifts more compactly. It's essential to thoroughly test this refactored version in the intended use case to ensure its correctness.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int count() {
    int c=0;
    for (int i=0;i<1<<16;i++) {
        long long u=i&0xf|i>>4&0xf0|i>>8&0xf00|i>>12&0xf000,u0=u,t;
        for(int j=1;j<7;j++)
            for(int k=1;k<7;k++)
                t=1LL<<(j*8+k),u&=~(t*((u&t)&&!((u>>(j*8+k-1)&1)+(u>>(j*8+k+1)&1)+(u>>((j-1)*8+k)&1)+(u>>((j+6)*8+k)&1))));
        c+=u==u0;
    }
    return c;
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int count() {
    int c=0;
    for (int i=0;i<1<<16;i++) {
        long long u=i&0xf|i>>4&0xf0|i>>8&0xf00|i>>12&0xf000,u0=u,t;
        for(int j=1;j<7;j++)
            for(int k=1;k<7;k++)
                t=1LL<<(j*8+k),u&=~(t*((u&t)&&!((u>>(j*8+k-1)&1)+(u>>(j*8+k+1)&1)+(u>>((j-1)*8+k)&1)+(u>>((j+6)*8+k)&1))));
        c+=u==u0;
    }
    return c;
}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 65536 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False