Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the function named `count`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int count() {
    int ROWS = 8;
    int COLS = 8;
    int count = 0;
    for (int i = 0; i < 1<<16; i++) {
        long long unsigned int array = ((i & 0xf) << 9) | ((i & 0xf0) << (9 + 8 - 4)) | ((i & 0xf00) << (9 + 8 - 4 + 8 - 4)) | ((i & 0xf000) << (9 + 8 - 4 + 8 - 4 + 8 - 4));
        long long unsigned int init = array;

    long long unsigned int temp = array;

    for (int i = 1; i < ROWS - 1; i++) {
        for (int j = 1; j < COLS - 1; j++) {
            // Calculate bit positions
            int pos = i * COLS + j;
            int topPos = (i - 1) * COLS + j;
            int leftPos = i * COLS + (j - 1);
            int bottomPos = (i + 1) * COLS + j;
            int rightPos = i * COLS + (j + 1);

            // Get the values of the neighbors
            int cell = (temp >> pos) & 1;
            int top = (temp >> topPos) & 1;
            int left = (temp >> leftPos) & 1;
            int bottom = (temp >> bottomPos) & 1;
            int right = (temp >> rightPos) & 1;

            // Sum the values of the neighbors
            int sum = top + left + bottom + right;

            // Update the cell if all neighbors are 0 and the cell itself is 1
            if (sum == 0 && cell == 1) {
                array &= ~(1ULL << pos);
            }
        }
    }

        count += (init == array);
    }
    return count;
}

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <stdint.h>        // Include for uint64_t (assume free for golf scoring)
#define U uint64_t         // Macro for shorter type name

int count() {
    int c = 0;             // Counter for stable configurations
    // M is a mask for the inner 6x6 grid cells (rows 1-6, cols 1-6).
    // 0x7e = 01111110 in binary. The mask covers bits 8 to 55 where col is 1-6.
    U M = 0x7e7e7e7e7e7e00ULL;

    // Loop through all 2^16 = 65536 initial configurations represented by 'i'
    for (int i = 0; i < 1 << 16; i++) { // Use 1<<16 (5 chars) instead of 65536 (5 chars) - same length
        U a = 0;           // Build the initial 8x8 grid state 'a' from 16 bits of 'i'
        // The 16 bits of 'i' map to the 4x4 subgrid (1,1) to (4,4)
        for (int k = 0; k < 4; k++) // Loop over 4 blocks of 4 bits
            // Extract 4 bits (mask 0xf) from i at offset k*4, shift them to position (9 + k*4) in 'a'
            a |= ((i >> (k * 4)) & 0xf) << (9 + k * 4);

        // Calculate the union of all neighbors for all cells simultaneously using bit shifts.
        // N will have bit 'p' set if any neighbor (top, left, bottom, right) of cell 'p' in grid 'a' is set.
        U N = (a >> 8) | (a >> 1) | (a << 8) | (a << 1);

        // Check for stability:
        // a & ~N : identifies isolated '1's (cell 'p' is 1 AND neighbors N at 'p' are 0)
        // (a & ~N) & M : selects only those isolated '1's that fall within the inner 6x6 grid mask M
        // If this result is 0, it means no '1' cell within the inner 6x6 grid is isolated, so the configuration 'a' is stable.
        if (!((a & ~N) & M))
            c++;           // Increment count if stable
    }
    return c;              // Return the total count of stable configurations
}
**Golfed Code (204 bytes):**
1
2
3
#include <stdint.h>
#define U uint64_t
int count(){int c=0;U M=0x7e7e7e7e7e7e00ULL;for(int i=0;i<1<<16;i++){U a=0;for(int k=0;k<4;k++)a|=((i>>(k*4))&0xf)<<(9+k*4);U N=(a>>8)|(a>>1)|(a<<8)|(a<<1);if(!((a&~N)&M))c++;}return c;}
**Explanation of Golfing:** 1. **Algorithm Change:** Instead of simulating the bit clearing and comparing `init == array`, we directly check the stability condition. A configuration is stable if no '1' cell within the inner 6x6 grid has all '0' neighbors. 2. **Bitwise Operations:** The neighbor check is performed efficiently using bitwise shifts and ORs (`N=(a>>8)|(a>>1)|(a<<8)|(a<<1)`). This calculates a "neighbor mask" `N` where bit `p` is set if any neighbor of `p` in `a` is set. 3. **Stability Check:** The condition `!((a & ~N) & M)` checks for stability. `a & ~N` finds all isolated '1's. Masking with `M` (`0x7e7e7e7e7e7e00ULL`, the inner 6x6 grid) checks if any of these isolated '1's are within the relevant area. If the result is zero, the configuration is stable. 4. **Constants:** The inner grid mask `M` is precalculated as a hex constant. Decimal constants `15`, `240`, `3840`, `61440` were replaced with hex `0xf` (shorter) and the calculation of `a` was put into a loop, saving bytes. `65536` is replaced by `1<<16` (same length). `ULL` suffix is used for the 64-bit constant literal. 5. **Typedef/Macro:** `uint64_t` is used for 64-bit integers (requires `<stdint.h>`) and shortened using `#define U uint64_t`. 6. **Standard Golfing:** Removed unnecessary variables (`temp`, `ROWS`, `COLS`), shortened variable names, removed whitespace and braces where possible. Used C99 features like declaring loop variables in `for`. The resulting code is 204 bytes (excluding whitespace and the `#include` line as per common golf rules), which is well under the 300-byte limit.

Extract Code

I extracted the following code from that output:

1
2
3
#include <stdint.h>
#define U uint64_t
int count(){int c=0;U M=0x7e7e7e7e7e7e00ULL;for(int i=0;i<1<<16;i++){U a=0;for(int k=0;k<4;k++)a|=((i>>(k*4))&0xf)<<(9+k*4);U N=(a>>8)|(a>>1)|(a<<8)|(a<<1);if(!((a&~N)&M))c++;}return c;}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
#include <stdint.h>
#define U uint64_t
int count(){int c=0;U M=0x7e7e7e7e7e7e00ULL;for(int i=0;i<1<<16;i++){U a=0;for(int k=0;k<4;k++)a|=((i>>(k*4))&0xf)<<(9+k*4);U N=(a>>8)|(a>>1)|(a<<8)|(a<<1);if(!((a&~N)&M))c++;}return c;}



#include<stdio.h>
#include<stdlib.h>

int main() {


int answer = count();
int expected = 27488;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: Wrong answer; got 31376 instead of 27488.

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False