Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the name `stepper`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
void stepper(int xw) {
  int Steps = 0;
  for (int x = 0; x < xw; x++) {
    switch (Steps) {
      case 0:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      case 1:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 1);
        break;
      case 2:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 3:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 4:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 5:
        digitalWrite(1, 1);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 6:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 7:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      default:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
    }
    Steps = (Steps + 1) % 8;
  }
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the name `stepper`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
void stepper(int xw) {
  int Steps = 0;
  for (int x = 0; x < xw; x++) {
    switch (Steps) {
      case 0:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      case 1:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 1);
        break;
      case 2:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 3:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 4:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 5:
        digitalWrite(1, 1);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 6:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 7:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      default:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
    }
    Steps = (Steps + 1) % 8;
  }
}

Output

# Code Golf: Stepper Function Looking at this function, I can see it's setting pins in a specific pattern cycle. The key to golfing this is to recognize that all those `digitalWrite` calls follow a pattern that can be represented more compactly. Here's my golfed version:

1
2
3
4
5
6
7
void stepper(int xw){
  char s=0,p[]={8,12,4,6,2,3,1,9};
  while(xw--){
    for(int i=0;i<4;i++)digitalWrite(i+1,(p[s]>>i)&1);
    s=(s+1)&7;
  }
}
## How it works: 1. I observe that each case has a pattern of pin settings that can be encoded as a single byte: - Case 0: [0,0,0,1] → binary 1000 → decimal 8 - Case 1: [0,0,1,1] → binary 1100 → decimal 12 - Case 2: [0,0,1,0] → binary 0100 → decimal 4 - And so on... 2. I'm assigning pin values by shifting and masking bits: - `(p[s]>>i)&1` extracts each bit from the pattern - For each step, we iterate through all 4 pins in a single loop 3. Instead of `(s+1)%8`, I use `(s+1)&7` which is more efficient and shorter The code is now much more compact (~113 bytes excluding whitespace) while maintaining the exact same functionality.

Extract Code

I extracted the following code from that output:

1
2
3
4
5
6
7
void stepper(int xw){
  char s=0,p[]={8,12,4,6,2,3,1,9};
  while(xw--){
    for(int i=0;i<4;i++)digitalWrite(i+1,(p[s]>>i)&1);
    s=(s+1)&7;
  }
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
void stepper(int xw){
  char s=0,p[]={8,12,4,6,2,3,1,9};
  while(xw--){
    for(int i=0;i<4;i++)digitalWrite(i+1,(p[s]>>i)&1);
    s=(s+1)&7;
  }
}



#include<stdio.h>
#include<stdlib.h>

#include <stdio.h>

int out = 0;
int digitalWrite(int pin, int value) {
  out *= 101;
  out += pin;
  out *= 97;
  out += value;
  return out;
}

int main() {


int answer = (stepper(100),out);
int expected = -1475775710;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: All tests passed main.c: In function 'stepper': main.c:5:25: warning: implicit declaration of function 'digitalWrite' [-Wimplicit-function-declaration] 5 | for(int i=0;i<4;i++)digitalWrite(i+1,(p[s]>>i)&1); | ^~~~~~~~~~~~

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

PyFunc

Resulting in output: True

Final Answer: True

Initial Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the name `stepper`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
void stepper(int xw) {
  int Steps = 0;
  for (int x = 0; x < xw; x++) {
    switch (Steps) {
      case 0:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      case 1:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 1);
        break;
      case 2:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 3:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 4:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 5:
        digitalWrite(1, 1);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 6:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 7:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      default:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
    }
    Steps = (Steps + 1) % 8;
  }
}

LLM Generation

Query

Code golf this function to be a lot shorter. You only get points if it's <300 bytes (not counting whitespace). Keep the name `stepper`.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
void stepper(int xw) {
  int Steps = 0;
  for (int x = 0; x < xw; x++) {
    switch (Steps) {
      case 0:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      case 1:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 1);
        break;
      case 2:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 3:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 1);
        digitalWrite(4, 0);
        break;
      case 4:
        digitalWrite(1, 0);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 5:
        digitalWrite(1, 1);
        digitalWrite(2, 1);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 6:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
      case 7:
        digitalWrite(1, 1);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 1);
        break;
      default:
        digitalWrite(1, 0);
        digitalWrite(2, 0);
        digitalWrite(3, 0);
        digitalWrite(4, 0);
        break;
    }
    Steps = (Steps + 1) % 8;
  }
}

Output

# Code Golf Solution I can significantly shorten this function by identifying patterns and optimizing the code structure. Here's my golfed solution:

1
2
3
4
5
6
void stepper(int xw){
  byte p[]={1,3,2,6,4,12,8,9};
  for(int x=0,s=0;x<xw;x++,s=(s+1)&7)
    for(int i=1;i<=4;i++)
      digitalWrite(i,(p[s]>>(4-i))&1);
}
## Explanation 1. I replaced the entire switch statement with a lookup table `p[]` containing the binary patterns for each step. 2. The values in the array represent: - 0001 (1) - Step 0 - 0011 (3) - Step 1 - 0010 (2) - Step 2 - 0110 (6) - Step 3 - 0100 (4) - Step 4 - 1100 (12) - Step 5 - 1000 (8) - Step 6 - 1001 (9) - Step 7 3. For each step, we loop through pins 1-4 and set each pin by extracting the appropriate bit from the pattern. 4. The `(s+1)&7` is a faster way to calculate `(s+1)%8` to wrap around the 8 steps. This solution is about 138 bytes (excluding whitespace), well under your 300-byte limit.

Extract Code

I extracted the following code from that output:

1
2
3
4
5
6
void stepper(int xw){
  byte p[]={1,3,2,6,4,12,8,9};
  for(int x=0,s=0;x<xw;x++,s=(s+1)&7)
    for(int i=1;i<=4;i++)
      digitalWrite(i,(p[s]>>(4-i))&1);
}

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
void stepper(int xw){
  byte p[]={1,3,2,6,4,12,8,9};
  for(int x=0,s=0;x<xw;x++,s=(s+1)&7)
    for(int i=1;i<=4;i++)
      digitalWrite(i,(p[s]>>(4-i))&1);
}



#include<stdio.h>
#include<stdlib.h>

#include <stdio.h>

int out = 0;
int digitalWrite(int pin, int value) {
  out *= 101;
  out += pin;
  out *= 97;
  out += value;
  return out;
}

int main() {


int answer = (stepper(100),out);
int expected = -1475775710;
if (answer != expected) {
    printf("Wrong answer; got %d instead of %d.\n", answer, expected);
    exit(1);
}
printf("All tests passed\n");
}
And got the output: main.c: In function 'stepper': main.c:3:3: error: unknown type name 'byte' 3 | byte p[]={1,3,2,6,4,12,8,9}; | ^~~~ main.c:6:7: warning: implicit declaration of function 'digitalWrite' [-Wimplicit-function-declaration] 6 | digitalWrite(i,(p[s]>>(4-i))&1); | ^~~~~~~~~~~~ main.sh: line 2: ./a.out: No such file or directory

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

PyFunc

Resulting in output: True

Final Answer: False