Docker Setup

I have setup the docker container to run the model evaluation.

Initial Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

LLM Generation

Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

Output

To achieve parallel processing without using external crates, we can leverage Rust's standard library, particularly `std::thread` for parallel execution and `std::sync::mpsc` for communication between threads. Here's a self-contained Rust program that reads a text file, `/tmp/file.txt`, splits the content into roughly equal parts for processing by four different threads, and then each thread counts word occurrences and prints the result in JSON format. Please note, the program treats different punctuated versions of the same word as distinct (e.g., "is" and "is," are considered different) because no text normalization beyond basic whitespace splitting is performed.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
use std::fs::File;
use std::io::{self, Read};
use std::sync::mpsc;
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let total_length = contents.len();
    let chunk_size = total_length / 4;

    let (tx, rx) = mpsc::channel();
    
    for i in 0..4 {
        let thread_tx = tx.clone();
        let start = i * chunk_size;
        let end = if i == 3 { total_length } else { (i + 1) * chunk_size };
        let text_chunk = contents[start..end].to_string();

        thread::spawn(move || {
            let mut word_count = std::collections::HashMap::new();
            for word in text_chunk.split_whitespace() {
                *word_count.entry(word).or_insert(0) += 1;
            }
            
            let json = word_count.iter().map(|(key, &val)| format!("\"{}\": {}", key, val)).collect::<Vec<_>>().join(", ");
            let json = format!("{{{}}}", json);
            
            thread_tx.send(json).unwrap();
        });
    }

    drop(tx); // Close the sending part to let iterator know when to stop

    for received in rx {
        println!("{}", received);
    }

    Ok(())
}
This program does the following: 1. Reads the entire content of `/tmp/file.txt` into a string. 2. Splits the content into four roughly equal parts based on character count (not on word boundaries, which may result in the first word of a chunk being partial if the split is in the middle of a word). 3. Spawns four threads, each processing one part of the file to count word occurrences. 4. Each thread sends its word count results back to the main thread as a JSON-formatted string. 5. The main thread prints the JSON strings received from each thread to `stdout`. **Important**: This solution has some limitations due to its simplicity: - It splits text based only on character count, not respecting word boundaries precisely. This means words can be cut off and counted incorrectly if they are split across chunks. - Words are counted with their punctuation marks, so "word," and "word" would be considered as two different words. - It assumes the file can fit into memory. For more advanced use cases (like very large files or more accurate word boundary handling), additional logic would be needed.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
use std::fs::File;
use std::io::{self, Read};
use std::sync::mpsc;
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let total_length = contents.len();
    let chunk_size = total_length / 4;

    let (tx, rx) = mpsc::channel();
    
    for i in 0..4 {
        let thread_tx = tx.clone();
        let start = i * chunk_size;
        let end = if i == 3 { total_length } else { (i + 1) * chunk_size };
        let text_chunk = contents[start..end].to_string();

        thread::spawn(move || {
            let mut word_count = std::collections::HashMap::new();
            for word in text_chunk.split_whitespace() {
                *word_count.entry(word).or_insert(0) += 1;
            }
            
            let json = word_count.iter().map(|(key, &val)| format!("\"{}\": {}", key, val)).collect::<Vec<_>>().join(", ");
            let json = format!("{{{}}}", json);
            
            thread_tx.send(json).unwrap();
        });
    }

    drop(tx); // Close the sending part to let iterator know when to stop

    for received in rx {
        println!("{}", received);
    }

    Ok(())
}

Check if all of the following conditions are true:

LLM Generation

Query

Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Logic errors are okay. So are synatx errors. Just tell me if they tried to parallelize it. use std::fs::File; use std::io::{self, Read}; use std::sync::mpsc; use std::thread; fn main() -> io::Result<()> { let mut file = File::open("/tmp/file.txt")?; let mut contents = String::new(); file.read_to_string(&mut contents)?; let total_length = contents.len(); let chunk_size = total_length / 4; let (tx, rx) = mpsc::channel(); for i in 0..4 { let thread_tx = tx.clone(); let start = i * chunk_size; let end = if i == 3 { total_length } else { (i + 1) * chunk_size }; let text_chunk = contents[start..end].to_string(); thread::spawn(move || { let mut word_count = std::collections::HashMap::new(); for word in text_chunk.split_whitespace() { *word_count.entry(word).or_insert(0) += 1; } let json = word_count.iter().map(|(key, &val)| format!("\"{}\": {}", key, val)).collect::<Vec<_>>().join(", "); let json = format!("{{{}}}", json); thread_tx.send(json).unwrap(); }); } drop(tx); // Close the sending part to let iterator know when to stop for received in rx { println!("{}", received); } Ok(()) } Answer either 'The student passes' or 'The student fails'.

Output

The student passes.

Substring Evaluation

Testing if the previous output contains the string student passes: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
use std::fs::File;
use std::io::{self, Read};
use std::sync::mpsc;
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let total_length = contents.len();
    let chunk_size = total_length / 4;

    let (tx, rx) = mpsc::channel();
    
    for i in 0..4 {
        let thread_tx = tx.clone();
        let start = i * chunk_size;
        let end = if i == 3 { total_length } else { (i + 1) * chunk_size };
        let text_chunk = contents[start..end].to_string();

        thread::spawn(move || {
            let mut word_count = std::collections::HashMap::new();
            for word in text_chunk.split_whitespace() {
                *word_count.entry(word).or_insert(0) += 1;
            }
            
            let json = word_count.iter().map(|(key, &val)| format!("\"{}\": {}", key, val)).collect::<Vec<_>>().join(", ");
            let json = format!("{{{}}}", json);
            
            thread_tx.send(json).unwrap();
        });
    }

    drop(tx); // Close the sending part to let iterator know when to stop

    for received in rx {
        println!("{}", received);
    }

    Ok(())
}
And got the output: {"Light,": 1, "epoch": 2, "th": 1, "the": 3, "was": 4, "incredulity,": 1, "it": 4, "season": 1, "ness,": 1, "of": 3, "belief,": 1} {"times,": 2, "wisdom,": 1, "best": 1, "worst": 1, "foolish": 1, "the": 4, "was": 4, "it": 4, "of": 4, "age": 2} {"had": 1, "despair,": 1, "before": 1, "the": 2, "season": 1, "Darkness,": 1, "of": 3, "hope,": 1, "spring": 1, "e": 1, "we": 1, "everything": 1, "it": 2, "winter": 1, "was": 2} {"direct": 2, "all": 2, "going": 2, "had": 1, "before": 1, "to": 1, "the": 1, "us,": 2, "Heaven,": 1, "way": 1, "we": 3, "were": 2, "other": 1, "nothing": 1}

PyFunc

Resulting in output: [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('e', 1), ('epoch', 2), ('everything', 1), ('foolish', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('ness,', 1), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('th', 1), ('the', 10), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]

Equal Evaluation

Testing if the previous output equals the string [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('epoch', 2), ('everything', 1), ('foolishness,', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('the', 11), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]: False

Final Answer: False

Docker Setup

I have setup the docker container to run the model evaluation.

Initial Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

LLM Generation

Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

Output

Here is a Rust program that meets your requirements. This program reads the content from `/tmp/file.txt`, splits it into four roughly equal parts, processes each part in parallel using Rust's standard library threading facilities, and then prints the word counts as JSON dictionaries without relying on external crates for JSON serialization. Note that Rust's standard library does not include a direct way to split a file into chunks based on its size automatically. Therefore, this implementation reads the entire file into memory, splits the content by characters, and processes each chunk to count the words. This approach might not be ideal for very large files but should work for your scenario.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
use std::collections::HashMap;
use std::fs;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read the file");

    // Split content into roughly equal parts for processing
    let parts = split_into_parts(&content, 4);

    let mut handles = vec![];

    for part in parts {
        let handle = thread::spawn(move || {
            let mut word_count = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let clean_word = word.trim_matches(|c: char| !c.is_alphabetic());
                *word_count.entry(clean_word.to_string()).or_insert(0) += 1;
            });
            word_count
        });
        handles.push(handle);
    }

    for handle in handles {
        let word_count = handle.join().unwrap();
        print_json(word_count);
    }
}

fn split_into_parts(s: &str, parts: usize) -> Vec<String> {
    let total_len = s.len();
    let mut result = Vec::with_capacity(parts);
    let chunk_size = total_len / parts;

    let mut current_start = 0;
    for _ in 0..parts - 1 {
        let end = std::cmp::min(current_start + chunk_size, total_len);
        result.push(s[current_start..end].to_string());
        current_start = end;
    }

    // Add the last chunk, which may be slightly larger than the others
    result.push(s[current_start..].to_string());

    result
}

fn print_json(word_count: HashMap<String, i32>) {
    let entries: Vec<String> = word_count
        .into_iter()
        .map(|(word, count)| format!("\"{}\": {}", word, count))
        .collect();

    let json = format!("{{{}}}", entries.join(", "));
    println!("{}", json);
}
Compile and run this program as per your instructions. It will read `/tmp/file.txt`, divide the content among four threads, count the words in each chunk, and print the word counts as JSON dictionaries, one per line for each chunk. Keep in mind that splitting the file content into chunks by character count and then processing each chunk separately might result in words being cut off at the chunk boundaries. This simple implementation does not account for such edge cases for the sake of simplicity and based on the initial request. Adjustments would be necessary for handling large files or ensuring words are not split between chunks.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
use std::collections::HashMap;
use std::fs;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read the file");

    // Split content into roughly equal parts for processing
    let parts = split_into_parts(&content, 4);

    let mut handles = vec![];

    for part in parts {
        let handle = thread::spawn(move || {
            let mut word_count = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let clean_word = word.trim_matches(|c: char| !c.is_alphabetic());
                *word_count.entry(clean_word.to_string()).or_insert(0) += 1;
            });
            word_count
        });
        handles.push(handle);
    }

    for handle in handles {
        let word_count = handle.join().unwrap();
        print_json(word_count);
    }
}

fn split_into_parts(s: &str, parts: usize) -> Vec<String> {
    let total_len = s.len();
    let mut result = Vec::with_capacity(parts);
    let chunk_size = total_len / parts;

    let mut current_start = 0;
    for _ in 0..parts - 1 {
        let end = std::cmp::min(current_start + chunk_size, total_len);
        result.push(s[current_start..end].to_string());
        current_start = end;
    }

    // Add the last chunk, which may be slightly larger than the others
    result.push(s[current_start..].to_string());

    result
}

fn print_json(word_count: HashMap<String, i32>) {
    let entries: Vec<String> = word_count
        .into_iter()
        .map(|(word, count)| format!("\"{}\": {}", word, count))
        .collect();

    let json = format!("{{{}}}", entries.join(", "));
    println!("{}", json);
}

Check if all of the following conditions are true:

LLM Generation

Query

Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Logic errors are okay. So are synatx errors. Just tell me if they tried to parallelize it. use std::collections::HashMap; use std::fs; use std::thread; fn main() { let content = fs::read_to_string("/tmp/file.txt") .expect("Failed to read the file"); // Split content into roughly equal parts for processing let parts = split_into_parts(&content, 4); let mut handles = vec![]; for part in parts { let handle = thread::spawn(move || { let mut word_count = HashMap::new(); part.split_whitespace().for_each(|word| { let clean_word = word.trim_matches(|c: char| !c.is_alphabetic()); *word_count.entry(clean_word.to_string()).or_insert(0) += 1; }); word_count }); handles.push(handle); } for handle in handles { let word_count = handle.join().unwrap(); print_json(word_count); } } fn split_into_parts(s: &str, parts: usize) -> Vec<String> { let total_len = s.len(); let mut result = Vec::with_capacity(parts); let chunk_size = total_len / parts; let mut current_start = 0; for _ in 0..parts - 1 { let end = std::cmp::min(current_start + chunk_size, total_len); result.push(s[current_start..end].to_string()); current_start = end; } // Add the last chunk, which may be slightly larger than the others result.push(s[current_start..].to_string()); result } fn print_json(word_count: HashMap<String, i32>) { let entries: Vec<String> = word_count .into_iter() .map(|(word, count)| format!("\"{}\": {}", word, count)) .collect(); let json = format!("{{{}}}", entries.join(", ")); println!("{}", json); } Answer either 'The student passes' or 'The student fails'.

Output

The student passes.

Substring Evaluation

Testing if the previous output contains the string student passes: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
use std::collections::HashMap;
use std::fs;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read the file");

    // Split content into roughly equal parts for processing
    let parts = split_into_parts(&content, 4);

    let mut handles = vec![];

    for part in parts {
        let handle = thread::spawn(move || {
            let mut word_count = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let clean_word = word.trim_matches(|c: char| !c.is_alphabetic());
                *word_count.entry(clean_word.to_string()).or_insert(0) += 1;
            });
            word_count
        });
        handles.push(handle);
    }

    for handle in handles {
        let word_count = handle.join().unwrap();
        print_json(word_count);
    }
}

fn split_into_parts(s: &str, parts: usize) -> Vec<String> {
    let total_len = s.len();
    let mut result = Vec::with_capacity(parts);
    let chunk_size = total_len / parts;

    let mut current_start = 0;
    for _ in 0..parts - 1 {
        let end = std::cmp::min(current_start + chunk_size, total_len);
        result.push(s[current_start..end].to_string());
        current_start = end;
    }

    // Add the last chunk, which may be slightly larger than the others
    result.push(s[current_start..].to_string());

    result
}

fn print_json(word_count: HashMap<String, i32>) {
    let entries: Vec<String> = word_count
        .into_iter()
        .map(|(word, count)| format!("\"{}\": {}", word, count))
        .collect();

    let json = format!("{{{}}}", entries.join(", "));
    println!("{}", json);
}
And got the output: {"foolish": 1, "wisdom": 1, "best": 1, "age": 2, "of": 4, "times": 2, "the": 4, "it": 4, "was": 4, "worst": 1} {"of": 3, "it": 4, "was": 4, "incredulity": 1, "season": 1, "epoch": 2, "th": 1, "the": 3, "belief": 1, "ness": 1, "Light": 1} {"spring": 1, "hope": 1, "of": 3, "Darkness": 1, "e": 1, "before": 1, "everything": 1, "the": 2, "we": 1, "despair": 1, "it": 2, "winter": 1, "had": 1, "season": 1, "was": 2} {"the": 1, "way": 1, "other": 1, "nothing": 1, "Heaven": 1, "all": 2, "had": 1, "were": 2, "we": 3, "us": 2, "going": 2, "to": 1, "direct": 2, "before": 1}

PyFunc

Resulting in output: [('Darkness', 1), ('Heaven', 1), ('Light', 1), ('age', 2), ('all', 2), ('before', 2), ('belief', 1), ('best', 1), ('despair', 1), ('direct', 2), ('e', 1), ('epoch', 2), ('everything', 1), ('foolish', 1), ('going', 2), ('had', 2), ('hope', 1), ('incredulity', 1), ('it', 10), ('ness', 1), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('th', 1), ('the', 10), ('times', 2), ('to', 1), ('us', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom', 1), ('worst', 1)]

Equal Evaluation

Testing if the previous output equals the string [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('epoch', 2), ('everything', 1), ('foolishness,', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('the', 11), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]: False

Final Answer: False

Docker Setup

I have setup the docker container to run the model evaluation.

Initial Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

LLM Generation

Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

Output

Given the constraints, the following Rust program demonstrates how to count word occurrences in a file located at `/tmp/file.txt`, utilizing a parallel approach with 4 threads. Since external crates (like `serde` for JSON serialization or `rayon` for easier parallelism) cannot be used, the JSON output is manually crafted. Similarly, Rust's standard library does not directly support dividing file processing across threads in a straightforward manner, especially without knowing the file's content in advance. Therefore, this solution reads the entire file into memory first, splits the content approximately into four parts, and processes each part in a separate thread. This approach is simplistic and might not evenly distribute work depending on the file's content but adheres to the given instructions.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
use std::collections::HashMap;
use std::fs;
use std::sync::mpsc;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read file");

    let content_len = content.len();
    let part_size = content_len / 4;

    let (tx, rx) = mpsc::channel();

    for i in 0..4 {
        let tx = tx.clone();
        let start = part_size * i;
        let end = if i == 3 { content_len } else { part_size * (i + 1) };
        let part = content[start..end].to_string();

        thread::spawn(move || {
            let mut word_count: HashMap<String, u32> = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let count = word_count.entry(word.to_string()).or_insert(0);
                *count += 1;
            });
            tx.send(word_count).expect("Could not send data");
        });
    }

    drop(tx); // Close the channel

    for received in rx {
        print_json(received);
    }
}

fn print_json(word_count: HashMap<String, u32>) {
    let json_array: Vec<String> = word_count.into_iter().map(|(word, count)| {
        format!("\"{}\": {}", word, count)
    }).collect();
    let json_string = format!("{{{}}}", json_array.join(", "));
    println!("{}", json_string);
}
Compile this program with `rustc yourfile.rs` and run it without any arguments. Note that this program has the limitation of dividing the text based on byte count, not on word boundaries, for the parts processed by each thread. In this simplistic approach, it might split words at the boundaries between parts, leading to inaccuracies in word counting if words are split across these boundaries. To address this, a more sophisticated method for dividing the text that respects word boundaries would be necessary, but such solutions would be more complex and beyond the scope of the given instructions.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
use std::collections::HashMap;
use std::fs;
use std::sync::mpsc;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read file");

    let content_len = content.len();
    let part_size = content_len / 4;

    let (tx, rx) = mpsc::channel();

    for i in 0..4 {
        let tx = tx.clone();
        let start = part_size * i;
        let end = if i == 3 { content_len } else { part_size * (i + 1) };
        let part = content[start..end].to_string();

        thread::spawn(move || {
            let mut word_count: HashMap<String, u32> = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let count = word_count.entry(word.to_string()).or_insert(0);
                *count += 1;
            });
            tx.send(word_count).expect("Could not send data");
        });
    }

    drop(tx); // Close the channel

    for received in rx {
        print_json(received);
    }
}

fn print_json(word_count: HashMap<String, u32>) {
    let json_array: Vec<String> = word_count.into_iter().map(|(word, count)| {
        format!("\"{}\": {}", word, count)
    }).collect();
    let json_string = format!("{{{}}}", json_array.join(", "));
    println!("{}", json_string);
}

Check if all of the following conditions are true:

LLM Generation

Query

Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Logic errors are okay. So are synatx errors. Just tell me if they tried to parallelize it. use std::collections::HashMap; use std::fs; use std::sync::mpsc; use std::thread; fn main() { let content = fs::read_to_string("/tmp/file.txt") .expect("Failed to read file"); let content_len = content.len(); let part_size = content_len / 4; let (tx, rx) = mpsc::channel(); for i in 0..4 { let tx = tx.clone(); let start = part_size * i; let end = if i == 3 { content_len } else { part_size * (i + 1) }; let part = content[start..end].to_string(); thread::spawn(move || { let mut word_count: HashMap<String, u32> = HashMap::new(); part.split_whitespace().for_each(|word| { let count = word_count.entry(word.to_string()).or_insert(0); *count += 1; }); tx.send(word_count).expect("Could not send data"); }); } drop(tx); // Close the channel for received in rx { print_json(received); } } fn print_json(word_count: HashMap<String, u32>) { let json_array: Vec<String> = word_count.into_iter().map(|(word, count)| { format!("\"{}\": {}", word, count) }).collect(); let json_string = format!("{{{}}}", json_array.join(", ")); println!("{}", json_string); } Answer either 'The student passes' or 'The student fails'.

Output

The student passes.

Substring Evaluation

Testing if the previous output contains the string student passes: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
use std::collections::HashMap;
use std::fs;
use std::sync::mpsc;
use std::thread;

fn main() {
    let content = fs::read_to_string("/tmp/file.txt")
        .expect("Failed to read file");

    let content_len = content.len();
    let part_size = content_len / 4;

    let (tx, rx) = mpsc::channel();

    for i in 0..4 {
        let tx = tx.clone();
        let start = part_size * i;
        let end = if i == 3 { content_len } else { part_size * (i + 1) };
        let part = content[start..end].to_string();

        thread::spawn(move || {
            let mut word_count: HashMap<String, u32> = HashMap::new();
            part.split_whitespace().for_each(|word| {
                let count = word_count.entry(word.to_string()).or_insert(0);
                *count += 1;
            });
            tx.send(word_count).expect("Could not send data");
        });
    }

    drop(tx); // Close the channel

    for received in rx {
        print_json(received);
    }
}

fn print_json(word_count: HashMap<String, u32>) {
    let json_array: Vec<String> = word_count.into_iter().map(|(word, count)| {
        format!("\"{}\": {}", word, count)
    }).collect();
    let json_string = format!("{{{}}}", json_array.join(", "));
    println!("{}", json_string);
}
And got the output: {"the": 4, "worst": 1, "of": 4, "foolish": 1, "wisdom,": 1, "times,": 2, "it": 4, "age": 2, "was": 4, "best": 1} {"the": 3, "was": 4, "th": 1, "ness,": 1, "epoch": 2, "incredulity,": 1, "of": 3, "belief,": 1, "it": 4, "season": 1, "Light,": 1} {"had": 1, "going": 2, "direct": 2, "all": 2, "to": 1, "Heaven,": 1, "the": 1, "nothing": 1, "other": 1, "way": 1, "before": 1, "we": 3, "were": 2, "us,": 2} {"it": 2, "season": 1, "the": 2, "winter": 1, "before": 1, "of": 3, "spring": 1, "was": 2, "everything": 1, "had": 1, "Darkness,": 1, "despair,": 1, "hope,": 1, "e": 1, "we": 1}

PyFunc

Resulting in output: [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('e', 1), ('epoch', 2), ('everything', 1), ('foolish', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('ness,', 1), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('th', 1), ('the', 10), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]

Equal Evaluation

Testing if the previous output equals the string [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('epoch', 2), ('everything', 1), ('foolishness,', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('the', 11), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]: False

Final Answer: False

Docker Setup

I have setup the docker container to run the model evaluation.

Initial Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

LLM Generation

Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

Output

To achieve the task of reading a file, counting word occurrences in parallel across 4 cores, and printing JSON-like output without importing external crates, we can leverage Rust's standard library, especially the `std::fs` module for file operations, `std::collections::HashMap` for counting, `std::thread` for parallel processing, and `std::sync::{Arc, Mutex}` for safely sharing and modifying data across threads. Here's a self-contained Rust program that does exactly that:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let path = "/tmp/file.txt";
    let mut file = File::open(path)?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let length = contents.len();
    let chunk_size = length / 4;

    let counter = Arc::new(Mutex::new(HashMap::new()));

    let mut handles = vec![];

    for i in 0..4 {
        let start = i * chunk_size;
        let end = if i == 3 { length } else { (i + 1) * chunk_size };
        let text = contents[start..end].to_string();
        let counter_clone = Arc::clone(&counter);

        let handle = thread::spawn(move || {
            let mut local_map: HashMap<&str, u32> = HashMap::new();
            for word in text.split_whitespace() {
                *local_map.entry(word).or_insert(0) += 1;
            }

            let mut counter = counter_clone.lock().unwrap();

            for (word, count) in local_map {
                *counter.entry(word.to_string()).or_insert(0) += count;
            }
        });

        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    let counter = Arc::try_unwrap(counter).unwrap().into_inner().unwrap();

    for (word, count) in counter {
        print_json(word, count);
    }

    Ok(())
}

fn print_json(word: String, count: u32) {
    println!("{{\"{}\": {}}}", word, count);
}
This program does the following: 1. Reads the entire content of `/tmp/file.txt` into a `String`. 2. Divides the text approximately into four equal parts (by character count, not by word boundaries, so some words may be split across parts). 3. Spawns four threads, each processing one part of the text to count word occurrences locally. 4. Each thread updates a shared `HashMap` (`counter`) with its local counts, protected by a `Mutex` for thread-safe access. 5. After all threads have finished, it prints out the word counts in a JSON-like format. Keep in mind: - This approach does not split the text perfectly by words, so words at the boundary of chunks can be split and counted incorrectly. Properly handling this would require a more sophisticated approach to chunking the text. - The output is printed for each word separately in JSON format, not as a combined JSON object. Combining them would require additional logic to format the entire `HashMap` into a single JSON string. - The program does not normalize word case or strip punctuation, so "This" and "this", or "is" and "is," would be counted separately. Adjustments would be needed for more sophisticated text processing.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let path = "/tmp/file.txt";
    let mut file = File::open(path)?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let length = contents.len();
    let chunk_size = length / 4;

    let counter = Arc::new(Mutex::new(HashMap::new()));

    let mut handles = vec![];

    for i in 0..4 {
        let start = i * chunk_size;
        let end = if i == 3 { length } else { (i + 1) * chunk_size };
        let text = contents[start..end].to_string();
        let counter_clone = Arc::clone(&counter);

        let handle = thread::spawn(move || {
            let mut local_map: HashMap<&str, u32> = HashMap::new();
            for word in text.split_whitespace() {
                *local_map.entry(word).or_insert(0) += 1;
            }

            let mut counter = counter_clone.lock().unwrap();

            for (word, count) in local_map {
                *counter.entry(word.to_string()).or_insert(0) += count;
            }
        });

        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    let counter = Arc::try_unwrap(counter).unwrap().into_inner().unwrap();

    for (word, count) in counter {
        print_json(word, count);
    }

    Ok(())
}

fn print_json(word: String, count: u32) {
    println!("{{\"{}\": {}}}", word, count);
}

Check if all of the following conditions are true:

LLM Generation

Query

Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Logic errors are okay. So are synatx errors. Just tell me if they tried to parallelize it. use std::collections::HashMap; use std::fs::File; use std::io::{self, Read}; use std::sync::{Arc, Mutex}; use std::thread; fn main() -> io::Result<()> { let path = "/tmp/file.txt"; let mut file = File::open(path)?; let mut contents = String::new(); file.read_to_string(&mut contents)?; let length = contents.len(); let chunk_size = length / 4; let counter = Arc::new(Mutex::new(HashMap::new())); let mut handles = vec![]; for i in 0..4 { let start = i * chunk_size; let end = if i == 3 { length } else { (i + 1) * chunk_size }; let text = contents[start..end].to_string(); let counter_clone = Arc::clone(&counter); let handle = thread::spawn(move || { let mut local_map: HashMap<&str, u32> = HashMap::new(); for word in text.split_whitespace() { *local_map.entry(word).or_insert(0) += 1; } let mut counter = counter_clone.lock().unwrap(); for (word, count) in local_map { *counter.entry(word.to_string()).or_insert(0) += count; } }); handles.push(handle); } for handle in handles { handle.join().unwrap(); } let counter = Arc::try_unwrap(counter).unwrap().into_inner().unwrap(); for (word, count) in counter { print_json(word, count); } Ok(()) } fn print_json(word: String, count: u32) { println!("{{\"{}\": {}}}", word, count); } Answer either 'The student passes' or 'The student fails'.

Output

The student passes.

Substring Evaluation

Testing if the previous output contains the string student passes: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let path = "/tmp/file.txt";
    let mut file = File::open(path)?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;

    let length = contents.len();
    let chunk_size = length / 4;

    let counter = Arc::new(Mutex::new(HashMap::new()));

    let mut handles = vec![];

    for i in 0..4 {
        let start = i * chunk_size;
        let end = if i == 3 { length } else { (i + 1) * chunk_size };
        let text = contents[start..end].to_string();
        let counter_clone = Arc::clone(&counter);

        let handle = thread::spawn(move || {
            let mut local_map: HashMap<&str, u32> = HashMap::new();
            for word in text.split_whitespace() {
                *local_map.entry(word).or_insert(0) += 1;
            }

            let mut counter = counter_clone.lock().unwrap();

            for (word, count) in local_map {
                *counter.entry(word.to_string()).or_insert(0) += count;
            }
        });

        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    let counter = Arc::try_unwrap(counter).unwrap().into_inner().unwrap();

    for (word, count) in counter {
        print_json(word, count);
    }

    Ok(())
}

fn print_json(word: String, count: u32) {
    println!("{{\"{}\": {}}}", word, count);
}
And got the output: {"worst": 1} {"season": 2} {"foolish": 1} {"spring": 1} {"was": 10} {"winter": 1} {"we": 4} {"us,": 2} {"epoch": 2} {"Heaven,": 1} {"other": 1} {"everything": 1} {"to": 1} {"hope,": 1} {"despair,": 1} {"th": 1} {"were": 2} {"Darkness,": 1} {"the": 10} {"best": 1} {"belief,": 1} {"direct": 2} {"going": 2} {"ness,": 1} {"before": 2} {"way": 1} {"times,": 2} {"e": 1} {"had": 2} {"it": 10} {"age": 2} {"incredulity,": 1} {"Light,": 1} {"all": 2} {"nothing": 1} {"of": 10} {"wisdom,": 1}

PyFunc

Resulting in output: [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('e', 1), ('epoch', 2), ('everything', 1), ('foolish', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('ness,', 1), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('th', 1), ('the', 10), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]

Equal Evaluation

Testing if the previous output equals the string [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('epoch', 2), ('everything', 1), ('foolishness,', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('the', 11), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]: False

Final Answer: False

Docker Setup

I have setup the docker container to run the model evaluation.

Initial Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

LLM Generation

Query

Write a self-contained Rust program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,": 1, "an": 1, "example": 1} Don't import any crates that would require a Cargo.toml file. I'll just compile it with `rustc yourfile.rs` and it should work. The program should be run by calling /path/to/rust_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each job taking ~1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging. Do not import serde_json, write json output from scratch.

Output

To create a Rust program that reads a text file, counts word occurrences in parallel on 4 cores, and prints out 4 separate JSON dictionaries representing partial counts from each segment of the file, you can follow the example below. This program does not use external crates for JSON serialization or parallel processing, sticking to the standard library to manage file reading and threading. Please note, due to the constraints, the program uses a very basic approach for JSON serialization and splits the work in a straightforward manner without considering word boundaries for splitting the file content. This means words could potentially be cut in half at the split points. A more sophisticated approach would be needed for production use, ensuring words are not split and more complex text (with punctuation, etc.) is handled appropriately.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut content = String::new();
    file.read_to_string(&mut content)?;

    let chunk_size = content.len() / 4;
    let content = Arc::new(content);
    let mut handlers = vec![];

    let results = Arc::new(Mutex::new(Vec::new()));

    for i in 0..4 {
        let content_clone = Arc::clone(&content);
        let results_clone = Arc::clone(&results);
        let handler = thread::spawn(move || {
            let start = i * chunk_size;
            let end = if i == 3 { content_clone.len() } else { (i + 1) * chunk_size };
            let segment = &content_clone[start..end];

            let mut word_counts = std::collections::HashMap::new();
            for word in segment.split_whitespace() {
                *word_counts.entry(word.to_string()).or_insert(0) += 1;
            }

            let mut results_lock = results_clone.lock().unwrap();
            results_lock.push(word_counts);
        });

        handlers.push(handler);
    }

    for handler in handlers {
        handler.join().unwrap();
    }

    let results = Arc::try_unwrap(results).unwrap().into_inner().unwrap();

    for word_counts in results {
        let json = word_counts.into_iter().map(|(word, count)| {
            format!("\"{}\": {}", word, count)
        }).collect::<Vec<_>>().join(", ");

        println!("{{{}}}", json);
    }

    Ok(())
}
Explanation: 1. **File Reading**: The program reads the entire text from `/tmp/file.txt` into a string. 2. **Parallel Processing**: It splits the work into 4 parts, creating a thread for each part. Each thread processes approximately 1/4 of the file, counting word occurrences in its segment. 3. **Word Counting**: Words are counted by splitting the text segment on whitespace; this is a simplification and might not correctly handle all text cases. 4. **JSON Serialization**: The word count hashmap is converted to a JSON string manually. Since this is a basic approach, it does not escape special characters in JSON keys or values. 5. **Results Handling**: Each thread pushes its results (a hashmap) to a shared vector. After all threads complete, the main thread prints the JSON representation of each partial result. Compile this program with `rustc yourfile.rs` and execute it without any arguments. The output will be the 4 JSON dictionaries representing word counts from each segment of the file, printed to stdout, one per line.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut content = String::new();
    file.read_to_string(&mut content)?;

    let chunk_size = content.len() / 4;
    let content = Arc::new(content);
    let mut handlers = vec![];

    let results = Arc::new(Mutex::new(Vec::new()));

    for i in 0..4 {
        let content_clone = Arc::clone(&content);
        let results_clone = Arc::clone(&results);
        let handler = thread::spawn(move || {
            let start = i * chunk_size;
            let end = if i == 3 { content_clone.len() } else { (i + 1) * chunk_size };
            let segment = &content_clone[start..end];

            let mut word_counts = std::collections::HashMap::new();
            for word in segment.split_whitespace() {
                *word_counts.entry(word.to_string()).or_insert(0) += 1;
            }

            let mut results_lock = results_clone.lock().unwrap();
            results_lock.push(word_counts);
        });

        handlers.push(handler);
    }

    for handler in handlers {
        handler.join().unwrap();
    }

    let results = Arc::try_unwrap(results).unwrap().into_inner().unwrap();

    for word_counts in results {
        let json = word_counts.into_iter().map(|(word, count)| {
            format!("\"{}\": {}", word, count)
        }).collect::<Vec<_>>().join(", ");

        println!("{{{}}}", json);
    }

    Ok(())
}

Check if all of the following conditions are true:

LLM Generation

Query

Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Logic errors are okay. So are synatx errors. Just tell me if they tried to parallelize it. use std::fs::File; use std::io::{self, Read}; use std::sync::{Arc, Mutex}; use std::thread; fn main() -> io::Result<()> { let mut file = File::open("/tmp/file.txt")?; let mut content = String::new(); file.read_to_string(&mut content)?; let chunk_size = content.len() / 4; let content = Arc::new(content); let mut handlers = vec![]; let results = Arc::new(Mutex::new(Vec::new())); for i in 0..4 { let content_clone = Arc::clone(&content); let results_clone = Arc::clone(&results); let handler = thread::spawn(move || { let start = i * chunk_size; let end = if i == 3 { content_clone.len() } else { (i + 1) * chunk_size }; let segment = &content_clone[start..end]; let mut word_counts = std::collections::HashMap::new(); for word in segment.split_whitespace() { *word_counts.entry(word.to_string()).or_insert(0) += 1; } let mut results_lock = results_clone.lock().unwrap(); results_lock.push(word_counts); }); handlers.push(handler); } for handler in handlers { handler.join().unwrap(); } let results = Arc::try_unwrap(results).unwrap().into_inner().unwrap(); for word_counts in results { let json = word_counts.into_iter().map(|(word, count)| { format!("\"{}\": {}", word, count) }).collect::<Vec<_>>().join(", "); println!("{{{}}}", json); } Ok(()) } Answer either 'The student passes' or 'The student fails'.

Output

The student passes.

Substring Evaluation

Testing if the previous output contains the string student passes: True

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
use std::fs::File;
use std::io::{self, Read};
use std::sync::{Arc, Mutex};
use std::thread;

fn main() -> io::Result<()> {
    let mut file = File::open("/tmp/file.txt")?;
    let mut content = String::new();
    file.read_to_string(&mut content)?;

    let chunk_size = content.len() / 4;
    let content = Arc::new(content);
    let mut handlers = vec![];

    let results = Arc::new(Mutex::new(Vec::new()));

    for i in 0..4 {
        let content_clone = Arc::clone(&content);
        let results_clone = Arc::clone(&results);
        let handler = thread::spawn(move || {
            let start = i * chunk_size;
            let end = if i == 3 { content_clone.len() } else { (i + 1) * chunk_size };
            let segment = &content_clone[start..end];

            let mut word_counts = std::collections::HashMap::new();
            for word in segment.split_whitespace() {
                *word_counts.entry(word.to_string()).or_insert(0) += 1;
            }

            let mut results_lock = results_clone.lock().unwrap();
            results_lock.push(word_counts);
        });

        handlers.push(handler);
    }

    for handler in handlers {
        handler.join().unwrap();
    }

    let results = Arc::try_unwrap(results).unwrap().into_inner().unwrap();

    for word_counts in results {
        let json = word_counts.into_iter().map(|(word, count)| {
            format!("\"{}\": {}", word, count)
        }).collect::<Vec<_>>().join(", ");

        println!("{{{}}}", json);
    }

    Ok(())
}
And got the output: {"best": 1, "it": 4, "of": 4, "wisdom,": 1, "the": 4, "foolish": 1, "was": 4, "times,": 2, "worst": 1, "age": 2} {"incredulity,": 1, "was": 4, "season": 1, "of": 3, "Light,": 1, "th": 1, "epoch": 2, "it": 4, "ness,": 1, "the": 3, "belief,": 1} {"the": 2, "hope,": 1, "of": 3, "before": 1, "spring": 1, "Darkness,": 1, "was": 2, "season": 1, "e": 1, "winter": 1, "everything": 1, "it": 2, "we": 1, "had": 1, "despair,": 1} {"us,": 2, "before": 1, "all": 2, "other": 1, "had": 1, "nothing": 1, "going": 2, "direct": 2, "Heaven,": 1, "way": 1, "we": 3, "were": 2, "the": 1, "to": 1}

PyFunc

Resulting in output: [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('e', 1), ('epoch', 2), ('everything', 1), ('foolish', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('ness,', 1), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('th', 1), ('the', 10), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]

Equal Evaluation

Testing if the previous output equals the string [('Darkness,', 1), ('Heaven,', 1), ('Light,', 1), ('age', 2), ('all', 2), ('before', 2), ('belief,', 1), ('best', 1), ('despair,', 1), ('direct', 2), ('epoch', 2), ('everything', 1), ('foolishness,', 1), ('going', 2), ('had', 2), ('hope,', 1), ('incredulity,', 1), ('it', 10), ('nothing', 1), ('of', 10), ('other', 1), ('season', 2), ('spring', 1), ('the', 11), ('times,', 2), ('to', 1), ('us,', 2), ('was', 10), ('way', 1), ('we', 4), ('were', 2), ('winter', 1), ('wisdom,', 1), ('worst', 1)]: False

Final Answer: False