I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that uses the `concurrent.futures` library to process the text file in parallel on 4 cores. The program reads the file in 4 equal parts and processes each part in a separate thread. The results are then printed as separate JSON dictionaries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import os import json import concurrent.futures # Set the path to the text file file_path = "/tmp/file.txt" # Set the number of cores to use for processing num_cores = 4 # Open the file and read the contents with open(file_path, "r") as f: text = f.read() # Split the text into equal parts for each core to process split_text = [text[i:i+len(text)//num_cores] for i in range(0, len(text), len(text)//num_cores)] # Define a function to count the words in a given text def count_words(text): word_count = {} for word in text.split(): if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count # Create an executor that uses all available cores with concurrent.futures.ProcessPoolExecutor(max_workers=num_cores) as executor: # Submit the count_words function for each part of the text future_to_words = {executor.submit(count_words, text): text for text in split_text} for future in concurrent.futures.as_completed(future_to_words): # Print the result as a JSON dictionary result = future.result() print(json.dumps(result)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import os import json import concurrent.futures # Set the path to the text file file_path = "/tmp/file.txt" # Set the number of cores to use for processing num_cores = 4 # Open the file and read the contents with open(file_path, "r") as f: text = f.read() # Split the text into equal parts for each core to process split_text = [text[i:i+len(text)//num_cores] for i in range(0, len(text), len(text)//num_cores)] # Define a function to count the words in a given text def count_words(text): word_count = {} for word in text.split(): if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count # Create an executor that uses all available cores with concurrent.futures.ProcessPoolExecutor(max_workers=num_cores) as executor: # Submit the count_words function for each part of the text future_to_words = {executor.submit(count_words, text): text for text in split_text} for future in concurrent.futures.as_completed(future_to_words): # Print the result as a JSON dictionary result = future.result() print(json.dumps(result)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import concurrent.futures # Set the path to the text file file_path = "/tmp/file.txt" # Set the number of cores to use for processing num_cores = 4 # Open the file and read the contents with open(file_path, "r") as f: text = f.read() # Split the text into equal parts for each core to process split_text = [text[i:i+len(text)//num_cores] for i in range(0, len(text), len(text)//num_cores)] # Define a function to count the words in a given text def count_words(text): word_count = {} for word in text.split(): if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count # Create an executor that uses all available cores with concurrent.futures.ProcessPoolExecutor(max_workers=num_cores) as executor: # Submit the count_words function for each part of the text future_to_words = {executor.submit(count_words, text): text for text in split_text} for future in concurrent.futures.as_completed(future_to_words): # Print the result as a JSON dictionary result = future.result() print(json.dumps(result)) Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import os import json import concurrent.futures # Set the path to the text file file_path = "/tmp/file.txt" # Set the number of cores to use for processing num_cores = 4 # Open the file and read the contents with open(file_path, "r") as f: text = f.read() # Split the text into equal parts for each core to process split_text = [text[i:i+len(text)//num_cores] for i in range(0, len(text), len(text)//num_cores)] # Define a function to count the words in a given text def count_words(text): word_count = {} for word in text.split(): if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count # Create an executor that uses all available cores with concurrent.futures.ProcessPoolExecutor(max_workers=num_cores) as executor: # Submit the count_words function for each part of the text future_to_words = {executor.submit(count_words, text): text for text in split_text} for future in concurrent.futures.as_completed(future_to_words): # Print the result as a JSON dictionary result = future.result() print(json.dumps(result)) |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolish": 1}
{"ness,": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'us,': 2, 'we': 4, 'had': 2, 'nothing': 1, 'before': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a possible solution that uses Python's `concurrent.futures` module to run the word counting in parallel, and the `json` module to print the results as JSON.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import os import json import re import concurrent.futures def word_count(lines): words = {} for line in lines: for word in re.findall(r'\w+', line): word = word.lower() words[word] = words.get(word, 0) + 1 return words def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: f.seek(chunk_size * (os.getpid() - 1)) lines = f.read(chunk_size).splitlines() return word_count(lines) if __name__ == '__main__': file_path = '/tmp/file.txt' with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor: chunks = [os.path.getsize(file_path) // 4] * 4 results = [executor.submit(process_chunk, file_path, chunk) for chunk in chunks] for result in results: print(json.dumps(result.result())) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import os import json import re import concurrent.futures def word_count(lines): words = {} for line in lines: for word in re.findall(r'\w+', line): word = word.lower() words[word] = words.get(word, 0) + 1 return words def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: f.seek(chunk_size * (os.getpid() - 1)) lines = f.read(chunk_size).splitlines() return word_count(lines) if __name__ == '__main__': file_path = '/tmp/file.txt' with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor: chunks = [os.path.getsize(file_path) // 4] * 4 results = [executor.submit(process_chunk, file_path, chunk) for chunk in chunks] for result in results: print(json.dumps(result.result())) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import re import concurrent.futures def word_count(lines): words = {} for line in lines: for word in re.findall(r'\w+', line): word = word.lower() words[word] = words.get(word, 0) + 1 return words def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: f.seek(chunk_size * (os.getpid() - 1)) lines = f.read(chunk_size).splitlines() return word_count(lines) if __name__ == '__main__': file_path = '/tmp/file.txt' with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor: chunks = [os.path.getsize(file_path) // 4] * 4 results = [executor.submit(process_chunk, file_path, chunk) for chunk in chunks] for result in results: print(json.dumps(result.result())) Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import os import json import re import concurrent.futures def word_count(lines): words = {} for line in lines: for word in re.findall(r'\w+', line): word = word.lower() words[word] = words.get(word, 0) + 1 return words def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: f.seek(chunk_size * (os.getpid() - 1)) lines = f.read(chunk_size).splitlines() return word_count(lines) if __name__ == '__main__': file_path = '/tmp/file.txt' with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor: chunks = [os.path.getsize(file_path) // 4] * 4 results = [executor.submit(process_chunk, file_path, chunk) for chunk in chunks] for result in results: print(json.dumps(result.result())) |
{}
{}
{}
{}
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here is a possible solution using the `concurrent.futures` library to process the file in parallel with 4 worker threads. This program reads the file in 4 equal chunks and counts the word frequencies in each chunk separately.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import os import json import re from collections import defaultdict from concurrent.futures import ThreadPoolExecutor def word_count(lines): words = re.findall(r'\w+', ' '.join(lines)) return dict((word, words.count(word)) for word in set(words)) def process_chunk(file, chunk_size): with open(file, 'r') as f: lines = [f.readline() for _ in range(chunk_size)] result = word_count(lines) print(json.dumps(result)) if __name__ == '__main__': file = '/tmp/file.txt' with open(file, 'r') as f: num_chunks = 4 chunk_size = (sum(1 for line in f) + num_chunks - 1) // num_chunks f.seek(0) with ThreadPoolExecutor(max_workers=4) as executor: for i in range(num_chunks): executor.submit(process_chunk, file, chunk_size) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import os import json import re from collections import defaultdict from concurrent.futures import ThreadPoolExecutor def word_count(lines): words = re.findall(r'\w+', ' '.join(lines)) return dict((word, words.count(word)) for word in set(words)) def process_chunk(file, chunk_size): with open(file, 'r') as f: lines = [f.readline() for _ in range(chunk_size)] result = word_count(lines) print(json.dumps(result)) if __name__ == '__main__': file = '/tmp/file.txt' with open(file, 'r') as f: num_chunks = 4 chunk_size = (sum(1 for line in f) + num_chunks - 1) // num_chunks f.seek(0) with ThreadPoolExecutor(max_workers=4) as executor: for i in range(num_chunks): executor.submit(process_chunk, file, chunk_size) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import re from collections import defaultdict from concurrent.futures import ThreadPoolExecutor def word_count(lines): words = re.findall(r'\w+', ' '.join(lines)) return dict((word, words.count(word)) for word in set(words)) def process_chunk(file, chunk_size): with open(file, 'r') as f: lines = [f.readline() for _ in range(chunk_size)] result = word_count(lines) print(json.dumps(result)) if __name__ == '__main__': file = '/tmp/file.txt' with open(file, 'r') as f: num_chunks = 4 chunk_size = (sum(1 for line in f) + num_chunks - 1) // num_chunks f.seek(0) with ThreadPoolExecutor(max_workers=4) as executor: for i in range(num_chunks): executor.submit(process_chunk, file, chunk_size) Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import os import json import re from collections import defaultdict from concurrent.futures import ThreadPoolExecutor def word_count(lines): words = re.findall(r'\w+', ' '.join(lines)) return dict((word, words.count(word)) for word in set(words)) def process_chunk(file, chunk_size): with open(file, 'r') as f: lines = [f.readline() for _ in range(chunk_size)] result = word_count(lines) print(json.dumps(result)) if __name__ == '__main__': file = '/tmp/file.txt' with open(file, 'r') as f: num_chunks = 4 chunk_size = (sum(1 for line in f) + num_chunks - 1) // num_chunks f.seek(0) with ThreadPoolExecutor(max_workers=4) as executor: for i in range(num_chunks): executor.submit(process_chunk, file, chunk_size) |
{"belief": 1, "epoch": 2, "age": 2, "despair": 1, "were": 2, "spring": 1, "Darkness": 1, "worst": 1, "to": 1, "way": 1, "the": 11, "us": 2, "best": 1, "winter": 1, "Light": 1, "Heaven": 1, "of": 10, "we": 4, "wisdom": 1, "before": 2, "going": 2, "other": 1, "direct": 2, "was": 10, "all": 2, "season": 2, "everything": 1, "had": 2, "times": 2, "it": 10, "incredulity": 1, "foolishness": 1, "hope": 1, "nothing": 1}
{"belief": 1, "epoch": 2, "age": 2, "despair": 1, "were": 2, "spring": 1, "Darkness": 1, "worst": 1, "to": 1, "way": 1, "the": 11, "us": 2, "best": 1, "winter": 1, "Light": 1, "Heaven": 1, "of": 10, "we": 4, "wisdom": 1, "before": 2, "going": 2, "other": 1, "direct": 2, "was": 10, "all": 2, "season": 2, "everything": 1, "had": 2, "times": 2, "it": 10, "incredulity": 1, "foolishness": 1, "hope": 1, "nothing": 1}
{"belief": 1, "epoch": 2, "age": 2, "despair": 1, "were": 2, "spring": 1, "Darkness": 1, "worst": 1, "to": 1, "way": 1, "the": 11, "us": 2, "best": 1, "winter": 1, "Light": 1, "Heaven": 1, "of": 10, "we": 4, "wisdom": 1, "before": 2, "going": 2, "other": 1, "direct": 2, "was": 10, "all": 2, "season": 2, "everything": 1, "had": 2, "times": 2, "it": 10, "incredulity": 1, "foolishness": 1, "hope": 1, "nothing": 1}
{"belief": 1, "epoch": 2, "age": 2, "despair": 1, "were": 2, "spring": 1, "Darkness": 1, "worst": 1, "to": 1, "way": 1, "the": 11, "us": 2, "best": 1, "winter": 1, "Light": 1, "Heaven": 1, "of": 10, "we": 4, "wisdom": 1, "before": 2, "going": 2, "other": 1, "direct": 2, "was": 10, "all": 2, "season": 2, "everything": 1, "had": 2, "times": 2, "it": 10, "incredulity": 1, "foolishness": 1, "hope": 1, "nothing": 1}
Resulting in output: {'belief': 4, 'epoch': 8, 'age': 8, 'despair': 4, 'were': 8, 'spring': 4, 'Darkness': 4, 'worst': 4, 'to': 4, 'way': 4, 'the': 44, 'us': 8, 'best': 4, 'winter': 4, 'Light': 4, 'Heaven': 4, 'of': 40, 'we': 16, 'wisdom': 4, 'before': 8, 'going': 8, 'other': 4, 'direct': 8, 'was': 40, 'all': 8, 'season': 8, 'everything': 4, 'had': 8, 'times': 8, 'it': 40, 'incredulity': 4, 'foolishness': 4, 'hope': 4, 'nothing': 4}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that uses the `concurrent.futures` library to process the file in parallel on 4 cores, and prints out 4 separate JSON dictionaries, one per line:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import os import re from concurrent.futures import ThreadPoolExecutor def count_words(lines): word_count = {} for line in lines: words = re.findall(r'\w+', line) for word in words: word = word.lower() word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: lines = f.readlines() start = 0 end = len(lines) word_counts = [] for i in range(4): if i == 3: end_index = end else: end_index = start + chunk_size word_counts.append(count_words(lines[start:end_index])) start = end_index return word_counts if __name__ == '__main__': file_path = '/tmp/file.txt' chunk_size = int(os.path.getsize(file_path) / 4) with ThreadPoolExecutor(max_workers=4) as executor: word_counts = list(executor.map(lambda x: process_chunk(file_path, chunk_size), [0]*4)) for wc in word_counts: print(json.dumps(wc, indent=2)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import os import re from concurrent.futures import ThreadPoolExecutor def count_words(lines): word_count = {} for line in lines: words = re.findall(r'\w+', line) for word in words: word = word.lower() word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: lines = f.readlines() start = 0 end = len(lines) word_counts = [] for i in range(4): if i == 3: end_index = end else: end_index = start + chunk_size word_counts.append(count_words(lines[start:end_index])) start = end_index return word_counts if __name__ == '__main__': file_path = '/tmp/file.txt' chunk_size = int(os.path.getsize(file_path) / 4) with ThreadPoolExecutor(max_workers=4) as executor: word_counts = list(executor.map(lambda x: process_chunk(file_path, chunk_size), [0]*4)) for wc in word_counts: print(json.dumps(wc, indent=2)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import os import re from concurrent.futures import ThreadPoolExecutor def count_words(lines): word_count = {} for line in lines: words = re.findall(r'\w+', line) for word in words: word = word.lower() word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: lines = f.readlines() start = 0 end = len(lines) word_counts = [] for i in range(4): if i == 3: end_index = end else: end_index = start + chunk_size word_counts.append(count_words(lines[start:end_index])) start = end_index return word_counts if __name__ == '__main__': file_path = '/tmp/file.txt' chunk_size = int(os.path.getsize(file_path) / 4) with ThreadPoolExecutor(max_workers=4) as executor: word_counts = list(executor.map(lambda x: process_chunk(file_path, chunk_size), [0]*4)) for wc in word_counts: print(json.dumps(wc, indent=2)) Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import os import re from concurrent.futures import ThreadPoolExecutor def count_words(lines): word_count = {} for line in lines: words = re.findall(r'\w+', line) for word in words: word = word.lower() word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(file_path, chunk_size): with open(file_path, 'r') as f: lines = f.readlines() start = 0 end = len(lines) word_counts = [] for i in range(4): if i == 3: end_index = end else: end_index = start + chunk_size word_counts.append(count_words(lines[start:end_index])) start = end_index return word_counts if __name__ == '__main__': file_path = '/tmp/file.txt' chunk_size = int(os.path.getsize(file_path) / 4) with ThreadPoolExecutor(max_workers=4) as executor: word_counts = list(executor.map(lambda x: process_chunk(file_path, chunk_size), [0]*4)) for wc in word_counts: print(json.dumps(wc, indent=2)) |
[
{
"it": 10,
"was": 10,
"the": 11,
"best": 1,
"of": 10,
"times": 2,
"worst": 1,
"age": 2,
"wisdom": 1,
"foolishness": 1,
"epoch": 2,
"belief": 1,
"incredulity": 1,
"season": 2,
"light": 1,
"darkness": 1,
"spring": 1,
"hope": 1,
"winter": 1,
"despair": 1,
"we": 4,
"had": 2,
"everything": 1,
"before": 2,
"us": 2,
"nothing": 1,
"were": 2,
"all": 2,
"going": 2,
"direct": 2,
"to": 1,
"heaven": 1,
"other": 1,
"way": 1
},
{},
{},
{}
]
[
{
"it": 10,
"was": 10,
"the": 11,
"best": 1,
"of": 10,
"times": 2,
"worst": 1,
"age": 2,
"wisdom": 1,
"foolishness": 1,
"epoch": 2,
"belief": 1,
"incredulity": 1,
"season": 2,
"light": 1,
"darkness": 1,
"spring": 1,
"hope": 1,
"winter": 1,
"despair": 1,
"we": 4,
"had": 2,
"everything": 1,
"before": 2,
"us": 2,
"nothing": 1,
"were": 2,
"all": 2,
"going": 2,
"direct": 2,
"to": 1,
"heaven": 1,
"other": 1,
"way": 1
},
{},
{},
{}
]
[
{
"it": 10,
"was": 10,
"the": 11,
"best": 1,
"of": 10,
"times": 2,
"worst": 1,
"age": 2,
"wisdom": 1,
"foolishness": 1,
"epoch": 2,
"belief": 1,
"incredulity": 1,
"season": 2,
"light": 1,
"darkness": 1,
"spring": 1,
"hope": 1,
"winter": 1,
"despair": 1,
"we": 4,
"had": 2,
"everything": 1,
"before": 2,
"us": 2,
"nothing": 1,
"were": 2,
"all": 2,
"going": 2,
"direct": 2,
"to": 1,
"heaven": 1,
"other": 1,
"way": 1
},
{},
{},
{}
]
[
{
"it": 10,
"was": 10,
"the": 11,
"best": 1,
"of": 10,
"times": 2,
"worst": 1,
"age": 2,
"wisdom": 1,
"foolishness": 1,
"epoch": 2,
"belief": 1,
"incredulity": 1,
"season": 2,
"light": 1,
"darkness": 1,
"spring": 1,
"hope": 1,
"winter": 1,
"despair": 1,
"we": 4,
"had": 2,
"everything": 1,
"before": 2,
"us": 2,
"nothing": 1,
"were": 2,
"all": 2,
"going": 2,
"direct": 2,
"to": 1,
"heaven": 1,
"other": 1,
"way": 1
},
{},
{},
{}
]
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python script that uses the concurrent.futures module to process the file in parallel on 4 cores. The script reads the file in chunks and processes each chunk in a separate thread. The word counts are then printed as separate JSON dictionaries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import os import concurrent.futures def word_count(text): counts = {} words = text.split() for word in words: if word in counts: counts[word] += 1 else: counts[word] = 1 return counts def process_chunk(chunk): return word_count(chunk) if __name__ == "__main__": with open("/tmp/file.txt", "r") as f: text = f.read() chunks = [text[i::4] for i in range(4)] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(process_chunk, chunk) for chunk in chunks] for future in concurrent.futures.as_completed(futures): counts = future.result() print(json.dumps(counts)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import os import concurrent.futures def word_count(text): counts = {} words = text.split() for word in words: if word in counts: counts[word] += 1 else: counts[word] = 1 return counts def process_chunk(chunk): return word_count(chunk) if __name__ == "__main__": with open("/tmp/file.txt", "r") as f: text = f.read() chunks = [text[i::4] for i in range(4)] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(process_chunk, chunk) for chunk in chunks] for future in concurrent.futures.as_completed(futures): counts = future.result() print(json.dumps(counts)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import os import concurrent.futures def word_count(text): counts = {} words = text.split() for word in words: if word in counts: counts[word] += 1 else: counts[word] = 1 return counts def process_chunk(chunk): return word_count(chunk) if __name__ == "__main__": with open("/tmp/file.txt", "r") as f: text = f.read() chunks = [text[i::4] for i in range(4)] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(process_chunk, chunk) for chunk in chunks] for future in concurrent.futures.as_completed(futures): counts = future.result() print(json.dumps(counts)) Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import os import concurrent.futures def word_count(text): counts = {} words = text.split() for word in words: if word in counts: counts[word] += 1 else: counts[word] = 1 return counts def process_chunk(chunk): return word_count(chunk) if __name__ == "__main__": with open("/tmp/file.txt", "r") as f: text = f.read() chunks = [text[i::4] for i in range(4)] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(process_chunk, chunk) for chunk in chunks] for future in concurrent.futures.as_completed(futures): counts = future.result() print(json.dumps(counts)) |
{"iaheoi,": 1, "sfm": 1, "wtaoimtsee": 1, "ln,": 1, "cfl,": 1, "cfcuytsea": 1, "Lttsea": 1, "Dn,": 1, "ioo": 1, "wtwefsredeh": 1, "ouwaonee,": 1, "elidcoa,": 1, "elidcht": 1}
{"tsesfm": 1, "wtwt": 1, "eiahgfs,": 1, "fie": 1, "wteh": 2, "i": 1, "rl,": 1, "soi,": 1, "soae": 1, "wtsnfpiahir": 1, "p,": 1, "ribrsedtgf": 1, "w": 2, "nit": 1, "v": 1, "nitehw": 1}
{"t": 1, "eiaho": 1, "tstsee": 1, "d": 1, "wtaoossiahp": 1, "beiahp": 1, "iei": 1, "wtsofg": 1, "wtsofrsiahpg": 1, "etsen": 1, "da": 1, "heynee,": 1, "h": 1, "ouweaggr": 1, "Heweaggr": 1, "ea": 1}
{"wtb": 1, "tstseroi,": 1, "woiahgfohstseooeftseoondtiahen": 1, "hiahen": 1, "kstser": 1, "h,": 1, "toeiwavtgf": 1, "hnibrserlo": 1, "etenerlo": 1, "etory": 1}
Resulting in output: {'iaheoi,': 1, 'sfm': 1, 'wtaoimtsee': 1, 'ln,': 1, 'cfl,': 1, 'cfcuytsea': 1, 'Lttsea': 1, 'Dn,': 1, 'ioo': 1, 'wtwefsredeh': 1, 'ouwaonee,': 1, 'elidcoa,': 1, 'elidcht': 1, 'tsesfm': 1, 'wtwt': 1, 'eiahgfs,': 1, 'fie': 1, 'wteh': 2, 'i': 1, 'rl,': 1, 'soi,': 1, 'soae': 1, 'wtsnfpiahir': 1, 'p,': 1, 'ribrsedtgf': 1, 'w': 2, 'nit': 1, 'v': 1, 'nitehw': 1, 't': 1, 'eiaho': 1, 'tstsee': 1, 'd': 1, 'wtaoossiahp': 1, 'beiahp': 1, 'iei': 1, 'wtsofg': 1, 'wtsofrsiahpg': 1, 'etsen': 1, 'da': 1, 'heynee,': 1, 'h': 1, 'ouweaggr': 1, 'Heweaggr': 1, 'ea': 1, 'wtb': 1, 'tstseroi,': 1, 'woiahgfohstseooeftseoondtiahen': 1, 'hiahen': 1, 'kstser': 1, 'h,': 1, 'toeiwavtgf': 1, 'hnibrserlo': 1, 'etenerlo': 1, 'etory': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False