I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python script that uses the multiprocessing library to read and process the file in parallel. Each worker process will read a chunk of the file, count the word frequencies, and print out a JSON dictionary.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing as mp from collections import defaultdict from functools import partial def word_count(chunk): words = chunk.split() freq = defaultdict(int) for word in words: freq[word] += 1 return freq def process_chunk(filepath, start, end): with open(filepath, 'r') as f: f.seek(start) chunk = f.read(end - start) word_freq = word_count(chunk) print(json.dumps(word_freq)) def main(): input_file = '/tmp/file.txt' file_size = os.path.getsize(input_file) num_processes = mp.cpu_count() chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else None p = mp.Process(target=process_chunk, args=(input_file, start, end)) p.start() processes.append(p) for p in processes: p.join() if __name__ == '__main__': main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing as mp from collections import defaultdict from functools import partial def word_count(chunk): words = chunk.split() freq = defaultdict(int) for word in words: freq[word] += 1 return freq def process_chunk(filepath, start, end): with open(filepath, 'r') as f: f.seek(start) chunk = f.read(end - start) word_freq = word_count(chunk) print(json.dumps(word_freq)) def main(): input_file = '/tmp/file.txt' file_size = os.path.getsize(input_file) num_processes = mp.cpu_count() chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else None p = mp.Process(target=process_chunk, args=(input_file, start, end)) p.start() processes.append(p) for p in processes: p.join() if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import multiprocessing as mp from collections import defaultdict from functools import partial def word_count(chunk): words = chunk.split() freq = defaultdict(int) for word in words: freq[word] += 1 return freq def process_chunk(filepath, start, end): with open(filepath, 'r') as f: f.seek(start) chunk = f.read(end - start) word_freq = word_count(chunk) print(json.dumps(word_freq)) def main(): input_file = '/tmp/file.txt' file_size = os.path.getsize(input_file) num_processes = mp.cpu_count() chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else None p = mp.Process(target=process_chunk, args=(input_file, start, end)) p.start() processes.append(p) for p in processes: p.join() if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing as mp from collections import defaultdict from functools import partial def word_count(chunk): words = chunk.split() freq = defaultdict(int) for word in words: freq[word] += 1 return freq def process_chunk(filepath, start, end): with open(filepath, 'r') as f: f.seek(start) chunk = f.read(end - start) word_freq = word_count(chunk) print(json.dumps(word_freq)) def main(): input_file = '/tmp/file.txt' file_size = os.path.getsize(input_file) num_processes = mp.cpu_count() chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else None p = mp.Process(target=process_chunk, args=(input_file, start, end)) p.start() processes.append(p) for p in processes: p.join() if __name__ == '__main__': main() |
{"it": 1, "was": 1, "the": 1, "best": 1, "of": 1, "times,": 1}
{"it": 1, "was": 1, "the": 1, "worst": 1, "of": 1, "times,": 1}
{"it": 1, "was": 1, "the": 1, "age": 1, "of": 1, "wisdom,": 1}
{"it": 1, "was": 1, "the": 1, "age": 1, "of": 1, "foolish": 1}
{"ness,": 1, "it": 1, "was": 1, "the": 1, "epoch": 1, "of": 1}
{"belief,": 1, "it": 1, "was": 1, "the": 1, "epoch": 1, "o": 1}
{"f": 1, "incredulity,": 1, "it": 1, "was": 1, "the": 1}
{"season": 1, "of": 1, "Light,": 1, "it": 1, "was": 1, "th": 1}
{"e": 1, "season": 1, "of": 1, "Darkness,": 1, "it": 1, "w": 1}
{"as": 1, "the": 1, "spring": 1, "of": 1, "hope,": 1, "it": 1}
{"was": 1, "the": 1, "winter": 1, "of": 1, "despair,": 1}
{"we": 1, "had": 1, "everything": 1, "before": 1}
{"us,": 1, "we": 1, "had": 1, "nothing": 1, "before": 1}
{"us,": 1, "we": 1, "were": 1, "all": 1, "going": 1, "dire": 1}
{"ct": 1, "to": 1, "Heaven,": 1, "we": 1, "were": 1, "all": 1}
Process Process-16:
Traceback (most recent call last):
File "/usr/lib/python3.11/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.11/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/src/app/main.py", line 18, in process_chunk
chunk = f.read(end - start)
~~~~^~~~~~~
TypeError: unsupported operand type(s) for -: 'NoneType' and 'int'
Resulting in output: {'it': 10, 'was': 9, 'the': 9, 'best': 1, 'of': 9, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'o': 1, 'f': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'e': 1, 'Darkness,': 1, 'w': 1, 'as': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 1, 'dire': 1, 'ct': 1, 'to': 1, 'Heaven,': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that uses the multiprocessing module to count the frequency of words in a text file in parallel. It divides the file into four parts and processes each part in a separate process. The program prints out four JSON dictionaries, one per line, each containing the word frequencies for a quarter of the file.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import json import multiprocessing import os def count_words(file_part): word_count = {} with open(file_part, 'r') as f: for line in f: for word in line.strip().split(): word = word.lower() if word not in word_count: word_count[word] = 0 word_count[word] += 1 return word_count def split_file(file_path, num_parts): with open(file_path, 'r') as input_file: lines = input_file.readlines() split_lines = [lines[i::num_parts] for i in range(num_parts)] temp_files = [] for i, lines in enumerate(split_lines): temp_file = f"/tmp/part_{i}.txt" with open(temp_file, 'w') as f: f.writelines(lines) temp_files.append(temp_file) return temp_files def main(): input_file = "/tmp/file.txt" num_parts = 4 temp_files = split_file(input_file, num_parts) with multiprocessing.Pool(processes=num_parts) as pool: word_counts = pool.map(count_words, temp_files) for word_count in word_counts: print(json.dumps(word_count)) for temp_file in temp_files: os.remove(temp_file) if __name__ == "__main__": main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import json import multiprocessing import os def count_words(file_part): word_count = {} with open(file_part, 'r') as f: for line in f: for word in line.strip().split(): word = word.lower() if word not in word_count: word_count[word] = 0 word_count[word] += 1 return word_count def split_file(file_path, num_parts): with open(file_path, 'r') as input_file: lines = input_file.readlines() split_lines = [lines[i::num_parts] for i in range(num_parts)] temp_files = [] for i, lines in enumerate(split_lines): temp_file = f"/tmp/part_{i}.txt" with open(temp_file, 'w') as f: f.writelines(lines) temp_files.append(temp_file) return temp_files def main(): input_file = "/tmp/file.txt" num_parts = 4 temp_files = split_file(input_file, num_parts) with multiprocessing.Pool(processes=num_parts) as pool: word_counts = pool.map(count_words, temp_files) for word_count in word_counts: print(json.dumps(word_count)) for temp_file in temp_files: os.remove(temp_file) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(file_part): word_count = {} with open(file_part, 'r') as f: for line in f: for word in line.strip().split(): word = word.lower() if word not in word_count: word_count[word] = 0 word_count[word] += 1 return word_count def split_file(file_path, num_parts): with open(file_path, 'r') as input_file: lines = input_file.readlines() split_lines = [lines[i::num_parts] for i in range(num_parts)] temp_files = [] for i, lines in enumerate(split_lines): temp_file = f"/tmp/part_{i}.txt" with open(temp_file, 'w') as f: f.writelines(lines) temp_files.append(temp_file) return temp_files def main(): input_file = "/tmp/file.txt" num_parts = 4 temp_files = split_file(input_file, num_parts) with multiprocessing.Pool(processes=num_parts) as pool: word_counts = pool.map(count_words, temp_files) for word_count in word_counts: print(json.dumps(word_count)) for temp_file in temp_files: os.remove(temp_file) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import json import multiprocessing import os def count_words(file_part): word_count = {} with open(file_part, 'r') as f: for line in f: for word in line.strip().split(): word = word.lower() if word not in word_count: word_count[word] = 0 word_count[word] += 1 return word_count def split_file(file_path, num_parts): with open(file_path, 'r') as input_file: lines = input_file.readlines() split_lines = [lines[i::num_parts] for i in range(num_parts)] temp_files = [] for i, lines in enumerate(split_lines): temp_file = f"/tmp/part_{i}.txt" with open(temp_file, 'w') as f: f.writelines(lines) temp_files.append(temp_file) return temp_files def main(): input_file = "/tmp/file.txt" num_parts = 4 temp_files = split_file(input_file, num_parts) with multiprocessing.Pool(processes=num_parts) as pool: word_counts = pool.map(count_words, temp_files) for word_count in word_counts: print(json.dumps(word_count)) for temp_file in temp_files: os.remove(temp_file) if __name__ == "__main__": main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "light,": 1, "darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'light,': 1, 'darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Sure, here's a Python program using multiprocessing to achieve this. This program assumes that the text file is large enough to be divided into 4 parts.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def count_words(file_path, start, end): with open(file_path, 'r') as f: f.seek(start) lines = f.read(end - start).split() word_count = {} for word in lines: word = word.strip(',.!?;:') if word not in word_count: word_count[word] = 1 else: word_count[word] += 1 return word_count def divide_file(file_path): file_size = os.path.getsize(file_path) chunk_size = file_size // 4 return [(file_path, i, i + chunk_size) for i in range(0, file_size, chunk_size)] if __name__ == '__main__': file_path = '/tmp/file.txt' chunks = divide_file(file_path) with Pool(4) as p: results = p.starmap(count_words, chunks) for result in results: print(json.dumps(result)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def count_words(file_path, start, end): with open(file_path, 'r') as f: f.seek(start) lines = f.read(end - start).split() word_count = {} for word in lines: word = word.strip(',.!?;:') if word not in word_count: word_count[word] = 1 else: word_count[word] += 1 return word_count def divide_file(file_path): file_size = os.path.getsize(file_path) chunk_size = file_size // 4 return [(file_path, i, i + chunk_size) for i in range(0, file_size, chunk_size)] if __name__ == '__main__': file_path = '/tmp/file.txt' chunks = divide_file(file_path) with Pool(4) as p: results = p.starmap(count_words, chunks) for result in results: print(json.dumps(result)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import multiprocessing from multiprocessing import Pool from functools import partial def count_words(file_path, start, end): with open(file_path, 'r') as f: f.seek(start) lines = f.read(end - start).split() word_count = {} for word in lines: word = word.strip(',.!?;:') if word not in word_count: word_count[word] = 1 else: word_count[word] += 1 return word_count def divide_file(file_path): file_size = os.path.getsize(file_path) chunk_size = file_size // 4 return [(file_path, i, i + chunk_size) for i in range(0, file_size, chunk_size)] if __name__ == '__main__': file_path = '/tmp/file.txt' chunks = divide_file(file_path) with Pool(4) as p: results = p.starmap(count_words, chunks) for result in results: print(json.dumps(result)) Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def count_words(file_path, start, end): with open(file_path, 'r') as f: f.seek(start) lines = f.read(end - start).split() word_count = {} for word in lines: word = word.strip(',.!?;:') if word not in word_count: word_count[word] = 1 else: word_count[word] += 1 return word_count def divide_file(file_path): file_size = os.path.getsize(file_path) chunk_size = file_size // 4 return [(file_path, i, i + chunk_size) for i in range(0, file_size, chunk_size)] if __name__ == '__main__': file_path = '/tmp/file.txt' chunks = divide_file(file_path) with Pool(4) as p: results = p.starmap(count_words, chunks) for result in results: print(json.dumps(result)) |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times": 2, "worst": 1, "age": 2, "wisdom": 1, "foolish": 1}
{"ness": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief": 1, "incredulity": 1, "season": 1, "Light": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope": 1, "winter": 1, "despair": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times': 2, 'worst': 1, 'age': 2, 'wisdom': 1, 'foolish': 1, 'ness': 1, 'epoch': 2, 'belief': 1, 'incredulity': 1, 'season': 2, 'Light': 1, 'th': 1, 'e': 1, 'Darkness': 1, 'spring': 1, 'hope': 1, 'winter': 1, 'despair': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that uses the multiprocessing library to count word frequencies in parallel. It reads the file in chunks and processes each chunk in a separate process. The result is printed as four JSON dictionaries, one per line.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def process_chunk(chunk): words = {} for line in chunk: for word in line.strip().split(): word = word.lower() if word not in words: words[word] = 1 else: words[word] += 1 return words def main(): file_path = "/tmp/file.txt" num_processes = 4 if not os.path.isfile(file_path): print("File not found.") return with open(file_path, "r") as f: chunk_size = int(os.path.getsize(file_path) / num_processes) pool = Pool(num_processes) process_chunk_partial = partial(process_chunk, chunk_size=chunk_size) results = pool.map(process_chunk_partial, [iter(f)] * num_processes) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
1 | python /path/to/python_word_count.py |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def process_chunk(chunk): words = {} for line in chunk: for word in line.strip().split(): word = word.lower() if word not in words: words[word] = 1 else: words[word] += 1 return words def main(): file_path = "/tmp/file.txt" num_processes = 4 if not os.path.isfile(file_path): print("File not found.") return with open(file_path, "r") as f: chunk_size = int(os.path.getsize(file_path) / num_processes) pool = Pool(num_processes) process_chunk_partial = partial(process_chunk, chunk_size=chunk_size) results = pool.map(process_chunk_partial, [iter(f)] * num_processes) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json import multiprocessing from multiprocessing import Pool from functools import partial def process_chunk(chunk): words = {} for line in chunk: for word in line.strip().split(): word = word.lower() if word not in words: words[word] = 1 else: words[word] += 1 return words def main(): file_path = "/tmp/file.txt" num_processes = 4 if not os.path.isfile(file_path): print("File not found.") return with open(file_path, "r") as f: chunk_size = int(os.path.getsize(file_path) / num_processes) pool = Pool(num_processes) process_chunk_partial = partial(process_chunk, chunk_size=chunk_size) results = pool.map(process_chunk_partial, [iter(f)] * num_processes) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json import multiprocessing from multiprocessing import Pool from functools import partial def process_chunk(chunk): words = {} for line in chunk: for word in line.strip().split(): word = word.lower() if word not in words: words[word] = 1 else: words[word] += 1 return words def main(): file_path = "/tmp/file.txt" num_processes = 4 if not os.path.isfile(file_path): print("File not found.") return with open(file_path, "r") as f: chunk_size = int(os.path.getsize(file_path) / num_processes) pool = Pool(num_processes) process_chunk_partial = partial(process_chunk, chunk_size=chunk_size) results = pool.map(process_chunk_partial, [iter(f)] * num_processes) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 41, in <module>
main()
File "/usr/src/app/main.py", line 32, in main
results = pool.map(process_chunk_partial, [iter(f)] * num_processes)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.11/multiprocessing/pool.py", line 367, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.11/multiprocessing/pool.py", line 774, in get
raise self._value
File "/usr/lib/python3.11/multiprocessing/pool.py", line 540, in _handle_tasks
put(task)
File "/usr/lib/python3.11/multiprocessing/connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.11/multiprocessing/reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
TypeError: cannot pickle '_io.TextIOWrapper' object
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that uses the multiprocessing module to count word frequencies in parallel across 4 cores. It assumes that the input file is large enough to be divided into 4 roughly equal parts.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import json import multiprocessing import os import re def count_words(file_part): word_count = {} for line in file_part: words = re.findall(r'\b\w+\b', line.lower()) for word in words: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count def divide_file(file_path, num_parts): with open(file_path, 'r') as file: lines = file.readlines() part_size = len(lines) // num_parts file_parts = [lines[i: i + part_size] for i in range(0, len(lines), part_size)] return file_parts def main(): file_path = '/tmp/file.txt' file_parts = divide_file(file_path, 4) with multiprocessing.Pool(4) as pool: results = pool.map(count_words, file_parts) for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import json import multiprocessing import os import re def count_words(file_part): word_count = {} for line in file_part: words = re.findall(r'\b\w+\b', line.lower()) for word in words: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count def divide_file(file_path, num_parts): with open(file_path, 'r') as file: lines = file.readlines() part_size = len(lines) // num_parts file_parts = [lines[i: i + part_size] for i in range(0, len(lines), part_size)] return file_parts def main(): file_path = '/tmp/file.txt' file_parts = divide_file(file_path, 4) with multiprocessing.Pool(4) as pool: results = pool.map(count_words, file_parts) for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os import re def count_words(file_part): word_count = {} for line in file_part: words = re.findall(r'\b\w+\b', line.lower()) for word in words: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count def divide_file(file_path, num_parts): with open(file_path, 'r') as file: lines = file.readlines() part_size = len(lines) // num_parts file_parts = [lines[i: i + part_size] for i in range(0, len(lines), part_size)] return file_parts def main(): file_path = '/tmp/file.txt' file_parts = divide_file(file_path, 4) with multiprocessing.Pool(4) as pool: results = pool.map(count_words, file_parts) for result in results: print(json.dumps(result)) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import json import multiprocessing import os import re def count_words(file_part): word_count = {} for line in file_part: words = re.findall(r'\b\w+\b', line.lower()) for word in words: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 return word_count def divide_file(file_path, num_parts): with open(file_path, 'r') as file: lines = file.readlines() part_size = len(lines) // num_parts file_parts = [lines[i: i + part_size] for i in range(0, len(lines), part_size)] return file_parts def main(): file_path = '/tmp/file.txt' file_parts = divide_file(file_path, 4) with multiprocessing.Pool(4) as pool: results = pool.map(count_words, file_parts) for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 36, in <module>
main()
File "/usr/src/app/main.py", line 27, in main
file_parts = divide_file(file_path, 4)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 22, in divide_file
file_parts = [lines[i: i + part_size] for i in range(0, len(lines), part_size)]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: range() arg 3 must not be zero
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False