I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Certainly! Below is a Python program that reads a text file located at `/tmp/file.txt`, processes it to count the occurrences of each word in parallel using 4 cores, and then prints out 4 different JSON dictionaries, one per line. The program uses the `multiprocessing` library to achieve parallelism.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import multiprocessing import json import re from collections import Counter def word_count(text): words = re.findall(r'\b\w+\b', text) return dict(Counter(words)) def process_file_chunk(chunk_start, chunk_size, file_path, result_queue): with open(file_path, 'r', encoding='utf-8') as f: f.seek(chunk_start) chunk = f.read(chunk_size) word_counts = word_count(chunk) result_queue.put(word_counts) def main(): file_path = '/tmp/file.txt' num_cores = 4 result_queue = multiprocessing.Queue() # Determine the size of the file with open(file_path, 'r', encoding='utf-8') as f: f.seek(0, 2) file_size = f.tell() chunk_size = file_size // num_cores processes = [] for i in range(num_cores): chunk_start = i * chunk_size # Ensure the last chunk goes to the end of the file if i == num_cores - 1: chunk_size = file_size - chunk_start process = multiprocessing.Process(target=process_file_chunk, args=(chunk_start, chunk_size, file_path, result_queue)) processes.append(process) process.start() for process in processes: process.join() # Collect results from the queue results = [result_queue.get() for _ in range(num_cores)] # Print each result as a separate JSON dictionary for result in results: print(json.dumps(result, ensure_ascii=False)) if __name__ == '__main__': main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import multiprocessing import json import re from collections import Counter def word_count(text): words = re.findall(r'\b\w+\b', text) return dict(Counter(words)) def process_file_chunk(chunk_start, chunk_size, file_path, result_queue): with open(file_path, 'r', encoding='utf-8') as f: f.seek(chunk_start) chunk = f.read(chunk_size) word_counts = word_count(chunk) result_queue.put(word_counts) def main(): file_path = '/tmp/file.txt' num_cores = 4 result_queue = multiprocessing.Queue() # Determine the size of the file with open(file_path, 'r', encoding='utf-8') as f: f.seek(0, 2) file_size = f.tell() chunk_size = file_size // num_cores processes = [] for i in range(num_cores): chunk_start = i * chunk_size # Ensure the last chunk goes to the end of the file if i == num_cores - 1: chunk_size = file_size - chunk_start process = multiprocessing.Process(target=process_file_chunk, args=(chunk_start, chunk_size, file_path, result_queue)) processes.append(process) process.start() for process in processes: process.join() # Collect results from the queue results = [result_queue.get() for _ in range(num_cores)] # Print each result as a separate JSON dictionary for result in results: print(json.dumps(result, ensure_ascii=False)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import multiprocessing import json import re from collections import Counter def word_count(text): words = re.findall(r'\b\w+\b', text) return dict(Counter(words)) def process_file_chunk(chunk_start, chunk_size, file_path, result_queue): with open(file_path, 'r', encoding='utf-8') as f: f.seek(chunk_start) chunk = f.read(chunk_size) word_counts = word_count(chunk) result_queue.put(word_counts) def main(): file_path = '/tmp/file.txt' num_cores = 4 result_queue = multiprocessing.Queue() # Determine the size of the file with open(file_path, 'r', encoding='utf-8') as f: f.seek(0, 2) file_size = f.tell() chunk_size = file_size // num_cores processes = [] for i in range(num_cores): chunk_start = i * chunk_size # Ensure the last chunk goes to the end of the file if i == num_cores - 1: chunk_size = file_size - chunk_start process = multiprocessing.Process(target=process_file_chunk, args=(chunk_start, chunk_size, file_path, result_queue)) processes.append(process) process.start() for process in processes: process.join() # Collect results from the queue results = [result_queue.get() for _ in range(num_cores)] # Print each result as a separate JSON dictionary for result in results: print(json.dumps(result, ensure_ascii=False)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import multiprocessing import json import re from collections import Counter def word_count(text): words = re.findall(r'\b\w+\b', text) return dict(Counter(words)) def process_file_chunk(chunk_start, chunk_size, file_path, result_queue): with open(file_path, 'r', encoding='utf-8') as f: f.seek(chunk_start) chunk = f.read(chunk_size) word_counts = word_count(chunk) result_queue.put(word_counts) def main(): file_path = '/tmp/file.txt' num_cores = 4 result_queue = multiprocessing.Queue() # Determine the size of the file with open(file_path, 'r', encoding='utf-8') as f: f.seek(0, 2) file_size = f.tell() chunk_size = file_size // num_cores processes = [] for i in range(num_cores): chunk_start = i * chunk_size # Ensure the last chunk goes to the end of the file if i == num_cores - 1: chunk_size = file_size - chunk_start process = multiprocessing.Process(target=process_file_chunk, args=(chunk_start, chunk_size, file_path, result_queue)) processes.append(process) process.start() for process in processes: process.join() # Collect results from the queue results = [result_queue.get() for _ in range(num_cores)] # Print each result as a separate JSON dictionary for result in results: print(json.dumps(result, ensure_ascii=False)) if __name__ == '__main__': main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times": 2, "worst": 1, "age": 2, "wisdom": 1, "foolish": 1}
{"ness": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief": 1, "incredulity": 1, "season": 1, "Light": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope": 1, "winter": 1, "despair": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times': 2, 'worst': 1, 'age': 2, 'wisdom': 1, 'foolish': 1, 'ness': 1, 'epoch': 2, 'belief': 1, 'incredulity': 1, 'season': 2, 'Light': 1, 'th': 1, 'e': 1, 'Darkness': 1, 'spring': 1, 'hope': 1, 'winter': 1, 'despair': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Below is a self-contained Python program that reads a text file from the location `/tmp/file.txt`, splits the file into four parts, and counts the word frequencies in parallel across four cores. The program prints four separate JSON dictionaries to stdout, one for each part of the file.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import os import json from collections import Counter from multiprocessing import Pool def count_words(text): words = text.split() word_count = Counter(words) return word_count def process_chunk(chunk): return count_words(chunk).most_common() def split_file_into_chunks(file_path, num_chunks): with open(file_path, 'r') as file: content = file.read() file_size = len(content) chunk_size = file_size // num_chunks return [content[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)] def main(): file_path = '/tmp/file.txt' num_chunks = 4 if not os.path.exists(file_path): print(f"File not found: {file_path}") return chunks = split_file_into_chunks(file_path, num_chunks) with Pool(num_chunks) as pool: results = pool.map(process_chunk, chunks) for result in results: word_count_dict = dict(result) print(json.dumps(word_count_dict)) if __name__ == "__main__": main() |
1 | /path/to/python /path/to/python_word_count.py
|
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import os import json from collections import Counter from multiprocessing import Pool def count_words(text): words = text.split() word_count = Counter(words) return word_count def process_chunk(chunk): return count_words(chunk).most_common() def split_file_into_chunks(file_path, num_chunks): with open(file_path, 'r') as file: content = file.read() file_size = len(content) chunk_size = file_size // num_chunks return [content[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)] def main(): file_path = '/tmp/file.txt' num_chunks = 4 if not os.path.exists(file_path): print(f"File not found: {file_path}") return chunks = split_file_into_chunks(file_path, num_chunks) with Pool(num_chunks) as pool: results = pool.map(process_chunk, chunks) for result in results: word_count_dict = dict(result) print(json.dumps(word_count_dict)) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json from collections import Counter from multiprocessing import Pool def count_words(text): words = text.split() word_count = Counter(words) return word_count def process_chunk(chunk): return count_words(chunk).most_common() def split_file_into_chunks(file_path, num_chunks): with open(file_path, 'r') as file: content = file.read() file_size = len(content) chunk_size = file_size // num_chunks return [content[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)] def main(): file_path = '/tmp/file.txt' num_chunks = 4 if not os.path.exists(file_path): print(f"File not found: {file_path}") return chunks = split_file_into_chunks(file_path, num_chunks) with Pool(num_chunks) as pool: results = pool.map(process_chunk, chunks) for result in results: word_count_dict = dict(result) print(json.dumps(word_count_dict)) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import os import json from collections import Counter from multiprocessing import Pool def count_words(text): words = text.split() word_count = Counter(words) return word_count def process_chunk(chunk): return count_words(chunk).most_common() def split_file_into_chunks(file_path, num_chunks): with open(file_path, 'r') as file: content = file.read() file_size = len(content) chunk_size = file_size // num_chunks return [content[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)] def main(): file_path = '/tmp/file.txt' num_chunks = 4 if not os.path.exists(file_path): print(f"File not found: {file_path}") return chunks = split_file_into_chunks(file_path, num_chunks) with Pool(num_chunks) as pool: results = pool.map(process_chunk, chunks) for result in results: word_count_dict = dict(result) print(json.dumps(word_count_dict)) if __name__ == "__main__": main() |
{"it": 4, "was": 4, "the": 4, "of": 4, "times,": 2, "age": 2, "best": 1, "worst": 1, "wisdom,": 1, "foolish": 1}
{"it": 4, "was": 4, "the": 3, "of": 3, "epoch": 2, "ness,": 1, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"of": 3, "it": 2, "was": 2, "the": 2, "e": 1, "season": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"we": 3, "us,": 2, "were": 2, "all": 2, "going": 2, "direct": 2, "had": 1, "nothing": 1, "before": 1, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'of': 10, 'times,': 2, 'age': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolish': 1, 'epoch': 2, 'ness,': 1, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Certainly! Here is a self-contained Python program that reads a text file from `/tmp/file.txt`, counts the occurrences of each word, and prints the results in JSON format. The program splits the work among 4 cores, each processing a quarter of the file, and prints four different JSON dictionaries.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #!/usr/bin/env python3 import json import os from multiprocessing import Pool, Manager def count_words(chunk): word_count = {} for line in chunk: words = line.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 return word_count def chunk_file(file_path, num_chunks): file_size = os.path.getsize(file_path) chunk_size = file_size // num_chunks with open(file_path, 'r') as file: chunks = [] chunk = [] current_size = 0 for line in file: chunk.append(line) current_size += len(line) if current_size >= chunk_size: chunks.append(chunk) chunk = [] current_size = 0 if chunk: chunks.append(chunk) return chunks def merge_dicts(dicts): merged = {} for d in dicts: for key, value in d.items(): merged[key] = merged.get(key, 0) + value return merged def main(): file_path = '/tmp/file.txt' num_cores = 4 chunks = chunk_file(file_path, num_cores) with Pool(num_cores) as pool: results = pool.map(count_words, chunks) for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
1 2 | chmod +x /path/to/python_word_count /path/to/python_word_count |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #!/usr/bin/env python3 import json import os from multiprocessing import Pool, Manager def count_words(chunk): word_count = {} for line in chunk: words = line.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 return word_count def chunk_file(file_path, num_chunks): file_size = os.path.getsize(file_path) chunk_size = file_size // num_chunks with open(file_path, 'r') as file: chunks = [] chunk = [] current_size = 0 for line in file: chunk.append(line) current_size += len(line) if current_size >= chunk_size: chunks.append(chunk) chunk = [] current_size = 0 if chunk: chunks.append(chunk) return chunks def merge_dicts(dicts): merged = {} for d in dicts: for key, value in d.items(): merged[key] = merged.get(key, 0) + value return merged def main(): file_path = '/tmp/file.txt' num_cores = 4 chunks = chunk_file(file_path, num_cores) with Pool(num_cores) as pool: results = pool.map(count_words, chunks) for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json import os from multiprocessing import Pool, Manager def count_words(chunk): word_count = {} for line in chunk: words = line.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 return word_count def chunk_file(file_path, num_chunks): file_size = os.path.getsize(file_path) chunk_size = file_size // num_chunks with open(file_path, 'r') as file: chunks = [] chunk = [] current_size = 0 for line in file: chunk.append(line) current_size += len(line) if current_size >= chunk_size: chunks.append(chunk) chunk = [] current_size = 0 if chunk: chunks.append(chunk) return chunks def merge_dicts(dicts): merged = {} for d in dicts: for key, value in d.items(): merged[key] = merged.get(key, 0) + value return merged def main(): file_path = '/tmp/file.txt' num_cores = 4 chunks = chunk_file(file_path, num_cores) with Pool(num_cores) as pool: results = pool.map(count_words, chunks) for result in results: print(json.dumps(result)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #!/usr/bin/env python3 import json import os from multiprocessing import Pool, Manager def count_words(chunk): word_count = {} for line in chunk: words = line.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 return word_count def chunk_file(file_path, num_chunks): file_size = os.path.getsize(file_path) chunk_size = file_size // num_chunks with open(file_path, 'r') as file: chunks = [] chunk = [] current_size = 0 for line in file: chunk.append(line) current_size += len(line) if current_size >= chunk_size: chunks.append(chunk) chunk = [] current_size = 0 if chunk: chunks.append(chunk) return chunks def merge_dicts(dicts): merged = {} for d in dicts: for key, value in d.items(): merged[key] = merged.get(key, 0) + value return merged def main(): file_path = '/tmp/file.txt' num_cores = 4 chunks = chunk_file(file_path, num_cores) with Pool(num_cores) as pool: results = pool.map(count_words, chunks) for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
To achieve the task of counting word frequencies in parallel using 4 cores, we can utilize Python's multiprocessing module. Below is a self-contained Python program that reads a file located at `/tmp/file.txt`, splits the file into 4 parts, counts the word frequencies in each part, and finally prints out the word counts for each part in JSON format.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import json import multiprocessing import os def count_words(text): word_count = {} words = text.split() for word in words: word = word.strip() if word: word_count[word] = word_count.get(word, 0) + 1 return word_count def worker(file_path, start, end, result_queue): with open(file_path, 'r') as f: f.seek(start) text = f.read(end - start) word_count = count_words(text) result_queue.put(word_count) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) # Calculate the chunk size for each worker chunk_size = file_size // 4 # Create a queue to collect results from workers result_queue = multiprocessing.Queue() # Create and start worker processes processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i != 3 else file_size p = multiprocessing.Process(target=worker, args=(file_path, start, end, result_queue)) processes.append(p) p.start() # Collect results from all workers for _ in range(4): word_count = result_queue.get() print(json.dumps(word_count)) # Wait for all worker processes to finish for p in processes: p.join() if __name__ == "__main__": main() |
1 | python /path/to/python_word_count.py
|
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import json import multiprocessing import os def count_words(text): word_count = {} words = text.split() for word in words: word = word.strip() if word: word_count[word] = word_count.get(word, 0) + 1 return word_count def worker(file_path, start, end, result_queue): with open(file_path, 'r') as f: f.seek(start) text = f.read(end - start) word_count = count_words(text) result_queue.put(word_count) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) # Calculate the chunk size for each worker chunk_size = file_size // 4 # Create a queue to collect results from workers result_queue = multiprocessing.Queue() # Create and start worker processes processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i != 3 else file_size p = multiprocessing.Process(target=worker, args=(file_path, start, end, result_queue)) processes.append(p) p.start() # Collect results from all workers for _ in range(4): word_count = result_queue.get() print(json.dumps(word_count)) # Wait for all worker processes to finish for p in processes: p.join() if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(text): word_count = {} words = text.split() for word in words: word = word.strip() if word: word_count[word] = word_count.get(word, 0) + 1 return word_count def worker(file_path, start, end, result_queue): with open(file_path, 'r') as f: f.seek(start) text = f.read(end - start) word_count = count_words(text) result_queue.put(word_count) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) # Calculate the chunk size for each worker chunk_size = file_size // 4 # Create a queue to collect results from workers result_queue = multiprocessing.Queue() # Create and start worker processes processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i != 3 else file_size p = multiprocessing.Process(target=worker, args=(file_path, start, end, result_queue)) processes.append(p) p.start() # Collect results from all workers for _ in range(4): word_count = result_queue.get() print(json.dumps(word_count)) # Wait for all worker processes to finish for p in processes: p.join() if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import json import multiprocessing import os def count_words(text): word_count = {} words = text.split() for word in words: word = word.strip() if word: word_count[word] = word_count.get(word, 0) + 1 return word_count def worker(file_path, start, end, result_queue): with open(file_path, 'r') as f: f.seek(start) text = f.read(end - start) word_count = count_words(text) result_queue.put(word_count) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) # Calculate the chunk size for each worker chunk_size = file_size // 4 # Create a queue to collect results from workers result_queue = multiprocessing.Queue() # Create and start worker processes processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i != 3 else file_size p = multiprocessing.Process(target=worker, args=(file_path, start, end, result_queue)) processes.append(p) p.start() # Collect results from all workers for _ in range(4): word_count = result_queue.get() print(json.dumps(word_count)) # Wait for all worker processes to finish for p in processes: p.join() if __name__ == "__main__": main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolish": 1}
{"ness,": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Sure! Below is a self-contained Python program that reads a text file, counts the occurrence of each word, and prints JSON output for four different segments of the file. The program uses the `multiprocessing` module to parallelize the task across four cores.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import json import multiprocessing import os def word_count_segment(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) data = file.read(end - start) words = data.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 print(json.dumps(word_count)) def split_file(file_path, num_segments): file_size = os.path.getsize(file_path) segment_size = file_size // num_segments segments = [] for i in range(num_segments): start = i * segment_size end = start + segment_size if i < num_segments - 1 else file_size segments.append((start, end)) return segments def main(): file_path = '/tmp/file.txt' num_cores = 4 segments = split_file(file_path, num_cores) processes = [] for start, end in segments: process = multiprocessing.Process(target=word_count_segment, args=(start, end, file_path)) processes.append(process) process.start() for process in processes: process.join() if __name__ == "__main__": main() |
1 2 | chmod +x /path/to/python_word_count |
1 2 | /path/to/python_word_count |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import json import multiprocessing import os def word_count_segment(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) data = file.read(end - start) words = data.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 print(json.dumps(word_count)) def split_file(file_path, num_segments): file_size = os.path.getsize(file_path) segment_size = file_size // num_segments segments = [] for i in range(num_segments): start = i * segment_size end = start + segment_size if i < num_segments - 1 else file_size segments.append((start, end)) return segments def main(): file_path = '/tmp/file.txt' num_cores = 4 segments = split_file(file_path, num_cores) processes = [] for start, end in segments: process = multiprocessing.Process(target=word_count_segment, args=(start, end, file_path)) processes.append(process) process.start() for process in processes: process.join() if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def word_count_segment(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) data = file.read(end - start) words = data.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 print(json.dumps(word_count)) def split_file(file_path, num_segments): file_size = os.path.getsize(file_path) segment_size = file_size // num_segments segments = [] for i in range(num_segments): start = i * segment_size end = start + segment_size if i < num_segments - 1 else file_size segments.append((start, end)) return segments def main(): file_path = '/tmp/file.txt' num_cores = 4 segments = split_file(file_path, num_cores) processes = [] for start, end in segments: process = multiprocessing.Process(target=word_count_segment, args=(start, end, file_path)) processes.append(process) process.start() for process in processes: process.join() if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import json import multiprocessing import os def word_count_segment(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) data = file.read(end - start) words = data.split() for word in words: word_count[word] = word_count.get(word, 0) + 1 print(json.dumps(word_count)) def split_file(file_path, num_segments): file_size = os.path.getsize(file_path) segment_size = file_size // num_segments segments = [] for i in range(num_segments): start = i * segment_size end = start + segment_size if i < num_segments - 1 else file_size segments.append((start, end)) return segments def main(): file_path = '/tmp/file.txt' num_cores = 4 segments = split_file(file_path, num_cores) processes = [] for start, end in segments: process = multiprocessing.Process(target=word_count_segment, args=(start, end, file_path)) processes.append(process) process.start() for process in processes: process.join() if __name__ == "__main__": main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolish": 1}
{"ness,": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False