I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that meets your requirements:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import os import json from collections import Counter from multiprocessing import Pool def count_words(file_part): word_counts = Counter() with open('/tmp/file.txt', 'r') as f: for i, line in enumerate(f): if i % 4 == file_part: words = line.split() word_counts.update(words) return dict(word_counts) if __name__ == '__main__': pool = Pool(processes=4) word_counts = pool.map(count_words, range(4)) pool.close() pool.join() for word_count in word_counts: print(json.dumps(word_count)) |
1 | python word_count.py |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import os import json from collections import Counter from multiprocessing import Pool def count_words(file_part): word_counts = Counter() with open('/tmp/file.txt', 'r') as f: for i, line in enumerate(f): if i % 4 == file_part: words = line.split() word_counts.update(words) return dict(word_counts) if __name__ == '__main__': pool = Pool(processes=4) word_counts = pool.map(count_words, range(4)) pool.close() pool.join() for word_count in word_counts: print(json.dumps(word_count)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json from collections import Counter from multiprocessing import Pool def count_words(file_part): word_counts = Counter() with open('/tmp/file.txt', 'r') as f: for i, line in enumerate(f): if i % 4 == file_part: words = line.split() word_counts.update(words) return dict(word_counts) if __name__ == '__main__': pool = Pool(processes=4) word_counts = pool.map(count_words, range(4)) pool.close() pool.join() for word_count in word_counts: print(json.dumps(word_count)) Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import os import json from collections import Counter from multiprocessing import Pool def count_words(file_part): word_counts = Counter() with open('/tmp/file.txt', 'r') as f: for i, line in enumerate(f): if i % 4 == file_part: words = line.split() word_counts.update(words) return dict(word_counts) if __name__ == '__main__': pool = Pool(processes=4) word_counts = pool.map(count_words, range(4)) pool.close() pool.join() for word_count in word_counts: print(json.dumps(word_count)) |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that reads a text file located at `/tmp/file.txt`, counts the occurrences of each word, and prints four separate JSON dictionaries (one per line) representing the word counts for each quarter of the file. The program uses the `multiprocessing` module to split the file into four parts and process them in parallel on four separate cores.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_chunk(start, end, filename): with open(filename, 'r') as f: f.seek(start) lines = [] offset = start while offset < end: line = f.readline() if not line: break lines.append(line.rstrip('\n')) offset += len(line) return lines def main(): filename = "/tmp/file.txt" if os.path.isfile(filename): file_size = os.path.getsize(filename) chunk_size = file_size // 4 with Pool(processes=4) as pool: chunks = [ pool.apply_async(read_chunk, args=(start, start + chunk_size, filename)) for start in range(0, file_size, chunk_size) ] results = [pool.apply_async(count_words, args=(chunk.get(),)) for chunk in chunks] for result in results: print(json.dumps(result.get())) else: print(f"Error: File '{filename}' not found.") if __name__ == "__main__": main() |
1 | python word_count.py |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_chunk(start, end, filename): with open(filename, 'r') as f: f.seek(start) lines = [] offset = start while offset < end: line = f.readline() if not line: break lines.append(line.rstrip('\n')) offset += len(line) return lines def main(): filename = "/tmp/file.txt" if os.path.isfile(filename): file_size = os.path.getsize(filename) chunk_size = file_size // 4 with Pool(processes=4) as pool: chunks = [ pool.apply_async(read_chunk, args=(start, start + chunk_size, filename)) for start in range(0, file_size, chunk_size) ] results = [pool.apply_async(count_words, args=(chunk.get(),)) for chunk in chunks] for result in results: print(json.dumps(result.get())) else: print(f"Error: File '{filename}' not found.") if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_chunk(start, end, filename): with open(filename, 'r') as f: f.seek(start) lines = [] offset = start while offset < end: line = f.readline() if not line: break lines.append(line.rstrip('\n')) offset += len(line) return lines def main(): filename = "/tmp/file.txt" if os.path.isfile(filename): file_size = os.path.getsize(filename) chunk_size = file_size // 4 with Pool(processes=4) as pool: chunks = [ pool.apply_async(read_chunk, args=(start, start + chunk_size, filename)) for start in range(0, file_size, chunk_size) ] results = [pool.apply_async(count_words, args=(chunk.get(),)) for chunk in chunks] for result in results: print(json.dumps(result.get())) else: print(f"Error: File '{filename}' not found.") if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_chunk(start, end, filename): with open(filename, 'r') as f: f.seek(start) lines = [] offset = start while offset < end: line = f.readline() if not line: break lines.append(line.rstrip('\n')) offset += len(line) return lines def main(): filename = "/tmp/file.txt" if os.path.isfile(filename): file_size = os.path.getsize(filename) chunk_size = file_size // 4 with Pool(processes=4) as pool: chunks = [ pool.apply_async(read_chunk, args=(start, start + chunk_size, filename)) for start in range(0, file_size, chunk_size) ] results = [pool.apply_async(count_words, args=(chunk.get(),)) for chunk in chunks] for result in results: print(json.dumps(result.get())) else: print(f"Error: File '{filename}' not found.") if __name__ == "__main__": main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{"ness,": 1, "it": 6, "was": 6, "the": 7, "epoch": 2, "of": 6, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 3, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 18, 'was': 18, 'the': 22, 'best': 1, 'of': 19, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 4, 'belief,': 2, 'incredulity,': 2, 'season': 5, 'Light,': 2, 'Darkness,': 3, 'spring': 3, 'hope,': 3, 'winter': 3, 'despair,': 3, 'we': 15, 'had': 7, 'everything': 3, 'before': 7, 'us,': 8, 'nothing': 4, 'were': 8, 'all': 8, 'going': 8, 'direct': 8, 'to': 4, 'Heaven,': 4, 'other': 4, 'way': 4, 'ness,': 1, 'e': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that prints a JSON output of word counts for a text file located at `/tmp/file.txt`. The program runs in parallel on 4 cores, each taking 1/4 of the file, and prints out 4 different JSON dicts, one per line:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_file_chunk(start, end, filename): with open(filename, "r") as f: f.seek(start) lines = f.readlines(end - start) return lines def main(): filename = "/tmp/file.txt" filesize = os.path.getsize(filename) chunk_size = filesize // 4 chunks = [ (0, chunk_size), (chunk_size, chunk_size * 2), (chunk_size * 2, chunk_size * 3), (chunk_size * 3, filesize) ] pool = Pool(processes=4) results = pool.starmap(count_words, [(read_file_chunk(start, end, filename)) for start, end in chunks]) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
1 | /path/to/python word_count.py |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_file_chunk(start, end, filename): with open(filename, "r") as f: f.seek(start) lines = f.readlines(end - start) return lines def main(): filename = "/tmp/file.txt" filesize = os.path.getsize(filename) chunk_size = filesize // 4 chunks = [ (0, chunk_size), (chunk_size, chunk_size * 2), (chunk_size * 2, chunk_size * 3), (chunk_size * 3, filesize) ] pool = Pool(processes=4) results = pool.starmap(count_words, [(read_file_chunk(start, end, filename)) for start, end in chunks]) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_file_chunk(start, end, filename): with open(filename, "r") as f: f.seek(start) lines = f.readlines(end - start) return lines def main(): filename = "/tmp/file.txt" filesize = os.path.getsize(filename) chunk_size = filesize // 4 chunks = [ (0, chunk_size), (chunk_size, chunk_size * 2), (chunk_size * 2, chunk_size * 3), (chunk_size * 3, filesize) ] pool = Pool(processes=4) results = pool.starmap(count_words, [(read_file_chunk(start, end, filename)) for start, end in chunks]) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import os import json from collections import Counter from multiprocessing import Pool def count_words(chunk): word_counts = Counter() for line in chunk: words = line.split() word_counts.update(words) return dict(word_counts) def read_file_chunk(start, end, filename): with open(filename, "r") as f: f.seek(start) lines = f.readlines(end - start) return lines def main(): filename = "/tmp/file.txt" filesize = os.path.getsize(filename) chunk_size = filesize // 4 chunks = [ (0, chunk_size), (chunk_size, chunk_size * 2), (chunk_size * 2, chunk_size * 3), (chunk_size * 3, filesize) ] pool = Pool(processes=4) results = pool.starmap(count_words, [(read_file_chunk(start, end, filename)) for start, end in chunks]) pool.close() pool.join() for result in results: print(json.dumps(result)) if __name__ == "__main__": main() |
{"i": 27, "t": 34, "w": 20, "a": 22, "s": 28, "h": 21, "e": 47, "b": 4, "o": 26, "f": 14, "m": 3, ",": 13, "r": 14, "g": 10, "d": 7, "l": 7, "n": 13, "p": 5, "c": 5, "u": 3, "y": 3, "L": 1, "D": 1, "k": 1, "v": 2, "H": 1}
{"n": 13, "e": 38, "s": 18, ",": 10, "i": 19, "t": 22, "w": 14, "a": 16, "h": 16, "p": 5, "o": 18, "c": 5, "f": 9, "b": 3, "l": 6, "r": 13, "d": 6, "u": 3, "y": 3, "L": 1, "g": 8, "D": 1, "k": 1, "v": 2, "H": 1}
{"e": 28, "s": 10, "a": 11, "o": 12, "n": 10, "f": 5, "D": 1, "r": 12, "k": 1, ",": 6, "i": 11, "t": 12, "w": 10, "h": 9, "p": 3, "g": 7, "d": 5, "v": 2, "y": 2, "b": 2, "u": 2, "l": 4, "c": 2, "H": 1}
{"u": 2, "s": 2, ",": 3, "w": 6, "e": 15, "h": 4, "a": 5, "d": 3, "n": 5, "o": 6, "t": 6, "i": 5, "g": 5, "b": 1, "f": 1, "r": 6, "l": 4, "c": 2, "H": 1, "v": 1, "y": 1}
Resulting in output: {'i': 62, 't': 74, 'w': 50, 'a': 54, 's': 58, 'h': 50, 'e': 128, 'b': 10, 'o': 62, 'f': 29, 'm': 3, ',': 32, 'r': 45, 'g': 30, 'd': 21, 'l': 21, 'n': 41, 'p': 13, 'c': 14, 'u': 10, 'y': 9, 'L': 2, 'D': 3, 'k': 3, 'v': 7, 'H': 4}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that meets your requirements:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import os import sys import json from collections import Counter from multiprocessing import Pool def count_words(chunk): words = chunk.split() return Counter(words) def process_chunk(start, end, file_path): with open(file_path, "r") as f: f.seek(start) chunk = f.read(end - start) word_counts = count_words(chunk) return dict(word_counts) def main(): if len(sys.argv) != 2: print("Usage: python word_count.py /path/to/file.txt") sys.exit(1) file_path = sys.argv[1] file_size = os.path.getsize(file_path) chunk_size = file_size // 4 pool = Pool(processes=4) results = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size result = pool.apply_async(process_chunk, args=(start, end, file_path)) results.append(result) pool.close() pool.join() for result in results: print(json.dumps(result.get())) if __name__ == "__main__": main() |
1 | python word_count.py /tmp/file.txt |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import os import sys import json from collections import Counter from multiprocessing import Pool def count_words(chunk): words = chunk.split() return Counter(words) def process_chunk(start, end, file_path): with open(file_path, "r") as f: f.seek(start) chunk = f.read(end - start) word_counts = count_words(chunk) return dict(word_counts) def main(): if len(sys.argv) != 2: print("Usage: python word_count.py /path/to/file.txt") sys.exit(1) file_path = sys.argv[1] file_size = os.path.getsize(file_path) chunk_size = file_size // 4 pool = Pool(processes=4) results = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size result = pool.apply_async(process_chunk, args=(start, end, file_path)) results.append(result) pool.close() pool.join() for result in results: print(json.dumps(result.get())) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import os import sys import json from collections import Counter from multiprocessing import Pool def count_words(chunk): words = chunk.split() return Counter(words) def process_chunk(start, end, file_path): with open(file_path, "r") as f: f.seek(start) chunk = f.read(end - start) word_counts = count_words(chunk) return dict(word_counts) def main(): if len(sys.argv) != 2: print("Usage: python word_count.py /path/to/file.txt") sys.exit(1) file_path = sys.argv[1] file_size = os.path.getsize(file_path) chunk_size = file_size // 4 pool = Pool(processes=4) results = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size result = pool.apply_async(process_chunk, args=(start, end, file_path)) results.append(result) pool.close() pool.join() for result in results: print(json.dumps(result.get())) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import os import sys import json from collections import Counter from multiprocessing import Pool def count_words(chunk): words = chunk.split() return Counter(words) def process_chunk(start, end, file_path): with open(file_path, "r") as f: f.seek(start) chunk = f.read(end - start) word_counts = count_words(chunk) return dict(word_counts) def main(): if len(sys.argv) != 2: print("Usage: python word_count.py /path/to/file.txt") sys.exit(1) file_path = sys.argv[1] file_size = os.path.getsize(file_path) chunk_size = file_size // 4 pool = Pool(processes=4) results = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size result = pool.apply_async(process_chunk, args=(start, end, file_path)) results.append(result) pool.close() pool.join() for result in results: print(json.dumps(result.get())) if __name__ == "__main__": main() |
Usage: python word_count.py /path/to/file.txt
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that prints a JSON output of how often each word appears in a text file located in `/tmp/file.txt`. It runs in parallel on 4 cores, with each core taking 1/4 of the file. The program prints out 4 different JSON dicts, one per line.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import multiprocessing import os def count_words(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) lines = file.read(end - start).split() for word in lines: word_count[word] = word_count.get(word, 0) + 1 return word_count def main(): file_path = '/tmp/file.txt' if not os.path.exists(file_path): print(f"Error: File {file_path} does not exist.") return file_size = os.path.getsize(file_path) chunk_size = file_size // 4 processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size p = multiprocessing.Process(target=count_words, args=(start, end, file_path)) processes.append(p) p.start() for process in processes: word_count = process.join() print(json.dumps(word_count)) if __name__ == "__main__": main() |
1 | python word_count.py |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import multiprocessing import os def count_words(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) lines = file.read(end - start).split() for word in lines: word_count[word] = word_count.get(word, 0) + 1 return word_count def main(): file_path = '/tmp/file.txt' if not os.path.exists(file_path): print(f"Error: File {file_path} does not exist.") return file_size = os.path.getsize(file_path) chunk_size = file_size // 4 processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size p = multiprocessing.Process(target=count_words, args=(start, end, file_path)) processes.append(p) p.start() for process in processes: word_count = process.join() print(json.dumps(word_count)) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) lines = file.read(end - start).split() for word in lines: word_count[word] = word_count.get(word, 0) + 1 return word_count def main(): file_path = '/tmp/file.txt' if not os.path.exists(file_path): print(f"Error: File {file_path} does not exist.") return file_size = os.path.getsize(file_path) chunk_size = file_size // 4 processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size p = multiprocessing.Process(target=count_words, args=(start, end, file_path)) processes.append(p) p.start() for process in processes: word_count = process.join() print(json.dumps(word_count)) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student fails.
Testing if the previous output contains the string student passes
: False
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import json import multiprocessing import os def count_words(start, end, file_path): word_count = {} with open(file_path, 'r') as file: file.seek(start) lines = file.read(end - start).split() for word in lines: word_count[word] = word_count.get(word, 0) + 1 return word_count def main(): file_path = '/tmp/file.txt' if not os.path.exists(file_path): print(f"Error: File {file_path} does not exist.") return file_size = os.path.getsize(file_path) chunk_size = file_size // 4 processes = [] for i in range(4): start = i * chunk_size end = start + chunk_size if i < 3 else file_size p = multiprocessing.Process(target=count_words, args=(start, end, file_path)) processes.append(p) p.start() for process in processes: word_count = process.join() print(json.dumps(word_count)) if __name__ == "__main__": main() |
null
null
null
null
Resulting in output: {}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False