I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that counts the word frequencies in a text file located at `/tmp/file.txt` using parallel processing on 4 cores:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word = word.strip('.,!?;:') word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word = word.strip('.,!?;:') word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word = word.strip('.,!?;:') word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word = word.strip('.,!?;:') word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times": 2, "worst": 1, "age": 2, "wisdom": 1, "foolish": 1}
{"ness": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief": 1, "incredulity": 1, "season": 1, "Light": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope": 1, "winter": 1, "despair": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times': 2, 'worst': 1, 'age': 2, 'wisdom': 1, 'foolish': 1, 'ness': 1, 'epoch': 2, 'belief': 1, 'incredulity': 1, 'season': 2, 'Light': 1, 'th': 1, 'e': 1, 'Darkness': 1, 'spring': 1, 'hope': 1, 'winter': 1, 'despair': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that counts the occurrences of each word in a text file located at `/tmp/file.txt` using parallel processing on 4 cores:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import json import multiprocessing from collections import Counter def count_words(start, end): word_counts = Counter() with open('/tmp/file.txt', 'r') as file: file.seek(start) if start > 0: file.readline() # Move to the next line if not at the start while file.tell() < end: line = file.readline() if not line: break words = line.strip().split() word_counts.update(words) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' num_processes = 4 with open(file_path, 'r') as file: file_size = file.seek(0, 2) chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else file_size process = multiprocessing.Process(target=count_words, args=(start, end)) processes.append(process) process.start() for process in processes: process.join() if __name__ == '__main__': main() |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import json import multiprocessing from collections import Counter def count_words(start, end): word_counts = Counter() with open('/tmp/file.txt', 'r') as file: file.seek(start) if start > 0: file.readline() # Move to the next line if not at the start while file.tell() < end: line = file.readline() if not line: break words = line.strip().split() word_counts.update(words) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' num_processes = 4 with open(file_path, 'r') as file: file_size = file.seek(0, 2) chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else file_size process = multiprocessing.Process(target=count_words, args=(start, end)) processes.append(process) process.start() for process in processes: process.join() if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing from collections import Counter def count_words(start, end): word_counts = Counter() with open('/tmp/file.txt', 'r') as file: file.seek(start) if start > 0: file.readline() # Move to the next line if not at the start while file.tell() < end: line = file.readline() if not line: break words = line.strip().split() word_counts.update(words) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' num_processes = 4 with open(file_path, 'r') as file: file_size = file.seek(0, 2) chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else file_size process = multiprocessing.Process(target=count_words, args=(start, end)) processes.append(process) process.start() for process in processes: process.join() if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import json import multiprocessing from collections import Counter def count_words(start, end): word_counts = Counter() with open('/tmp/file.txt', 'r') as file: file.seek(start) if start > 0: file.readline() # Move to the next line if not at the start while file.tell() < end: line = file.readline() if not line: break words = line.strip().split() word_counts.update(words) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' num_processes = 4 with open(file_path, 'r') as file: file_size = file.seek(0, 2) chunk_size = file_size // num_processes processes = [] for i in range(num_processes): start = i * chunk_size end = start + chunk_size if i < num_processes - 1 else file_size process = multiprocessing.Process(target=count_words, args=(start, end)) processes.append(process) process.start() for process in processes: process.join() if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that meets your requirements:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk_number): chunk_size = os.path.getsize('/tmp/file.txt') // 4 with open('/tmp/file.txt', 'r') as file: file.seek(chunk_number * chunk_size) chunk = file.read(chunk_size) if chunk_number == 3: chunk += file.read() word_count = count_words(chunk) print(json.dumps(word_count)) if __name__ == '__main__': pool = multiprocessing.Pool(processes=4) pool.map(process_chunk, range(4)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk_number): chunk_size = os.path.getsize('/tmp/file.txt') // 4 with open('/tmp/file.txt', 'r') as file: file.seek(chunk_number * chunk_size) chunk = file.read(chunk_size) if chunk_number == 3: chunk += file.read() word_count = count_words(chunk) print(json.dumps(word_count)) if __name__ == '__main__': pool = multiprocessing.Pool(processes=4) pool.map(process_chunk, range(4)) |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk_number): chunk_size = os.path.getsize('/tmp/file.txt') // 4 with open('/tmp/file.txt', 'r') as file: file.seek(chunk_number * chunk_size) chunk = file.read(chunk_size) if chunk_number == 3: chunk += file.read() word_count = count_words(chunk) print(json.dumps(word_count)) if __name__ == '__main__': pool = multiprocessing.Pool(processes=4) pool.map(process_chunk, range(4)) Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk_number): chunk_size = os.path.getsize('/tmp/file.txt') // 4 with open('/tmp/file.txt', 'r') as file: file.seek(chunk_number * chunk_size) chunk = file.read(chunk_size) if chunk_number == 3: chunk += file.read() word_count = count_words(chunk) print(json.dumps(word_count)) if __name__ == '__main__': pool = multiprocessing.Pool(processes=4) pool.map(process_chunk, range(4)) |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolish": 1}
{"ness,": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'us,': 2, 'we': 4, 'had': 2, 'nothing': 1, 'before': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that counts the frequency of each word in a text file located at `/tmp/file.txt` using parallel processing on 4 cores:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = "/tmp/file.txt" with open(file_path, "r") as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == "__main__": main() |
1 | chmod +x /path/to/python_word_count |
1 | /path/to/python_word_count |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #!/usr/bin/env python import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = "/tmp/file.txt" with open(file_path, "r") as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == "__main__": main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = "/tmp/file.txt" with open(file_path, "r") as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == "__main__": main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #!/usr/bin/env python import json import multiprocessing import os def count_words(chunk): word_count = {} for word in chunk.split(): word_count[word] = word_count.get(word, 0) + 1 return word_count def process_chunk(chunk): word_count = count_words(chunk) print(json.dumps(word_count)) def main(): file_path = "/tmp/file.txt" with open(file_path, "r") as file: text = file.read() chunk_size = len(text) // 4 chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=4) as pool: pool.map(process_chunk, chunks) if __name__ == "__main__": main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolish": 1}
{"ness,": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief,": 1, "incredulity,": 1, "season": 1, "Light,": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness,": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us,": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolish': 1, 'ness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'th': 1, 'e': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a self-contained Python program that reads a text file located at `/tmp/file.txt`, counts the occurrences of each word in parallel using 4 cores, and prints the JSON output of the word counts:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import json import multiprocessing import os def count_words(text): word_counts = {} for word in text.split(): word = word.strip('.,?!') if word: word_counts[word] = word_counts.get(word, 0) + 1 return word_counts def process_chunk(chunk): word_counts = count_words(chunk) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() num_cores = 4 chunk_size = len(text) // num_cores chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=num_cores) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
1 | chmod +x /path/to/python_word_count |
1 | /path/to/python_word_count |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import json import multiprocessing import os def count_words(text): word_counts = {} for word in text.split(): word = word.strip('.,?!') if word: word_counts[word] = word_counts.get(word, 0) + 1 return word_counts def process_chunk(chunk): word_counts = count_words(chunk) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() num_cores = 4 chunk_size = len(text) // num_cores chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=num_cores) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. import json import multiprocessing import os def count_words(text): word_counts = {} for word in text.split(): word = word.strip('.,?!') if word: word_counts[word] = word_counts.get(word, 0) + 1 return word_counts def process_chunk(chunk): word_counts = count_words(chunk) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() num_cores = 4 chunk_size = len(text) // num_cores chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=num_cores) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import json import multiprocessing import os def count_words(text): word_counts = {} for word in text.split(): word = word.strip('.,?!') if word: word_counts[word] = word_counts.get(word, 0) + 1 return word_counts def process_chunk(chunk): word_counts = count_words(chunk) print(json.dumps(word_counts)) def main(): file_path = '/tmp/file.txt' with open(file_path, 'r') as file: text = file.read() num_cores = 4 chunk_size = len(text) // num_cores chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] with multiprocessing.Pool(processes=num_cores) as pool: pool.map(process_chunk, chunks) if __name__ == '__main__': main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times": 2, "worst": 1, "age": 2, "wisdom": 1, "foolish": 1}
{"ness": 1, "it": 4, "was": 4, "the": 3, "epoch": 2, "of": 3, "belief": 1, "incredulity": 1, "season": 1, "Light": 1, "th": 1}
{"e": 1, "season": 1, "of": 3, "Darkness": 1, "it": 2, "was": 2, "the": 2, "spring": 1, "hope": 1, "winter": 1, "despair": 1, "we": 1, "had": 1, "everything": 1, "before": 1}
{"us": 2, "we": 3, "had": 1, "nothing": 1, "before": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven": 1, "the": 1, "other": 1, "way": 1}
Resulting in output: {'it': 10, 'was': 10, 'the': 10, 'best': 1, 'of': 10, 'times': 2, 'worst': 1, 'age': 2, 'wisdom': 1, 'foolish': 1, 'ness': 1, 'epoch': 2, 'belief': 1, 'incredulity': 1, 'season': 2, 'Light': 1, 'th': 1, 'e': 1, 'Darkness': 1, 'spring': 1, 'hope': 1, 'winter': 1, 'despair': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False