I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that processes a text file in parallel and outputs word counts as JSON for each chunk:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_chunk(chunk): """Count words in a given text chunk""" # Split the chunk into words and count them words = chunk.split() return dict(Counter(words)) def process_chunk(args): """Process a specific chunk of the file""" start, chunk_size = args with open('/tmp/file.txt', 'r') as f: # Seek to the start position of this chunk f.seek(start) # If this isn't the first chunk, we need to finish reading the partial word if start != 0: f.readline() # Read the chunk chunk = f.read(chunk_size) # If this isn't the last chunk, we need to read until the end of the last word if len(chunk) == chunk_size: chunk = chunk.rsplit(None, 1)[0] # Count words and return the result return count_words_in_chunk(chunk) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate chunk sizes (roughly equal portions) chunk_size = file_size // 4 # Create list of (start_position, chunk_size) tuples chunks = [ (i * chunk_size, chunk_size) for i in range(4) ] # Adjust last chunk to include remainder chunks[-1] = (chunks[-1][0], file_size - (3 * chunk_size)) # Create pool and process chunks in parallel with mp.Pool(4) as pool: results = pool.map(process_chunk, chunks) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
1 2 3 4 | {"word1": 5, "word2": 3} {"word2": 2, "word3": 4} {"word4": 1, "word5": 6} {"word5": 2, "word6": 3} |
1 | ./python_word_count |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_chunk(chunk): """Count words in a given text chunk""" # Split the chunk into words and count them words = chunk.split() return dict(Counter(words)) def process_chunk(args): """Process a specific chunk of the file""" start, chunk_size = args with open('/tmp/file.txt', 'r') as f: # Seek to the start position of this chunk f.seek(start) # If this isn't the first chunk, we need to finish reading the partial word if start != 0: f.readline() # Read the chunk chunk = f.read(chunk_size) # If this isn't the last chunk, we need to read until the end of the last word if len(chunk) == chunk_size: chunk = chunk.rsplit(None, 1)[0] # Count words and return the result return count_words_in_chunk(chunk) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate chunk sizes (roughly equal portions) chunk_size = file_size // 4 # Create list of (start_position, chunk_size) tuples chunks = [ (i * chunk_size, chunk_size) for i in range(4) ] # Adjust last chunk to include remainder chunks[-1] = (chunks[-1][0], file_size - (3 * chunk_size)) # Create pool and process chunks in parallel with mp.Pool(4) as pool: results = pool.map(process_chunk, chunks) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_chunk(chunk): """Count words in a given text chunk""" # Split the chunk into words and count them words = chunk.split() return dict(Counter(words)) def process_chunk(args): """Process a specific chunk of the file""" start, chunk_size = args with open('/tmp/file.txt', 'r') as f: # Seek to the start position of this chunk f.seek(start) # If this isn't the first chunk, we need to finish reading the partial word if start != 0: f.readline() # Read the chunk chunk = f.read(chunk_size) # If this isn't the last chunk, we need to read until the end of the last word if len(chunk) == chunk_size: chunk = chunk.rsplit(None, 1)[0] # Count words and return the result return count_words_in_chunk(chunk) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate chunk sizes (roughly equal portions) chunk_size = file_size // 4 # Create list of (start_position, chunk_size) tuples chunks = [ (i * chunk_size, chunk_size) for i in range(4) ] # Adjust last chunk to include remainder chunks[-1] = (chunks[-1][0], file_size - (3 * chunk_size)) # Create pool and process chunks in parallel with mp.Pool(4) as pool: results = pool.map(process_chunk, chunks) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_chunk(chunk): """Count words in a given text chunk""" # Split the chunk into words and count them words = chunk.split() return dict(Counter(words)) def process_chunk(args): """Process a specific chunk of the file""" start, chunk_size = args with open('/tmp/file.txt', 'r') as f: # Seek to the start position of this chunk f.seek(start) # If this isn't the first chunk, we need to finish reading the partial word if start != 0: f.readline() # Read the chunk chunk = f.read(chunk_size) # If this isn't the last chunk, we need to read until the end of the last word if len(chunk) == chunk_size: chunk = chunk.rsplit(None, 1)[0] # Count words and return the result return count_words_in_chunk(chunk) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate chunk sizes (roughly equal portions) chunk_size = file_size // 4 # Create list of (start_position, chunk_size) tuples chunks = [ (i * chunk_size, chunk_size) for i in range(4) ] # Adjust last chunk to include remainder chunks[-1] = (chunks[-1][0], file_size - (3 * chunk_size)) # Create pool and process chunks in parallel with mp.Pool(4) as pool: results = pool.map(process_chunk, chunks) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
{"it": 4, "was": 4, "the": 4, "best": 1, "of": 4, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1}
{}
{}
{}
Resulting in output: {'it': 4, 'was': 4, 'the': 4, 'best': 1, 'of': 4, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: False
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that processes a text file in parallel across 4 cores and outputs word counts as JSON for each segment:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #!/usr/bin/env python3 import json import os from multiprocessing import Process, Queue from collections import Counter def count_words_in_segment(start_pos, length, queue): """Count words in a segment of the file and put results in queue""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to segment start f.seek(start_pos) # If not at start of file, read and discard partial first word if start_pos != 0: f.readline() # Read segment content = f.read(length) # Read to end of last word if not at EOF if start_pos + length < os.path.getsize('/tmp/file.txt'): content += f.readline() # Count words words = content.split() word_counts.update(words) # Put results in queue queue.put(dict(word_counts)) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment size (rounded down) segment_size = file_size // 4 # Create queue for results queue = Queue() # Create processes processes = [] for i in range(4): start = i * segment_size # For last segment, read until end of file length = segment_size if i < 3 else (file_size - start) p = Process(target=count_words_in_segment, args=(start, length, queue)) processes.append(p) p.start() # Get results from queue results = [] for _ in range(4): results.append(queue.get()) # Wait for all processes to complete for p in processes: p.join() # Print results for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
1 2 3 4 | {"word1": 5, "word2": 3} {"word2": 2, "word3": 4} {"word1": 1, "word4": 6} {"word3": 2, "word5": 3} |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #!/usr/bin/env python3 import json import os from multiprocessing import Process, Queue from collections import Counter def count_words_in_segment(start_pos, length, queue): """Count words in a segment of the file and put results in queue""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to segment start f.seek(start_pos) # If not at start of file, read and discard partial first word if start_pos != 0: f.readline() # Read segment content = f.read(length) # Read to end of last word if not at EOF if start_pos + length < os.path.getsize('/tmp/file.txt'): content += f.readline() # Count words words = content.split() word_counts.update(words) # Put results in queue queue.put(dict(word_counts)) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment size (rounded down) segment_size = file_size // 4 # Create queue for results queue = Queue() # Create processes processes = [] for i in range(4): start = i * segment_size # For last segment, read until end of file length = segment_size if i < 3 else (file_size - start) p = Process(target=count_words_in_segment, args=(start, length, queue)) processes.append(p) p.start() # Get results from queue results = [] for _ in range(4): results.append(queue.get()) # Wait for all processes to complete for p in processes: p.join() # Print results for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json import os from multiprocessing import Process, Queue from collections import Counter def count_words_in_segment(start_pos, length, queue): """Count words in a segment of the file and put results in queue""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to segment start f.seek(start_pos) # If not at start of file, read and discard partial first word if start_pos != 0: f.readline() # Read segment content = f.read(length) # Read to end of last word if not at EOF if start_pos + length < os.path.getsize('/tmp/file.txt'): content += f.readline() # Count words words = content.split() word_counts.update(words) # Put results in queue queue.put(dict(word_counts)) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment size (rounded down) segment_size = file_size // 4 # Create queue for results queue = Queue() # Create processes processes = [] for i in range(4): start = i * segment_size # For last segment, read until end of file length = segment_size if i < 3 else (file_size - start) p = Process(target=count_words_in_segment, args=(start, length, queue)) processes.append(p) p.start() # Get results from queue results = [] for _ in range(4): results.append(queue.get()) # Wait for all processes to complete for p in processes: p.join() # Print results for result in results: print(json.dumps(result)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #!/usr/bin/env python3 import json import os from multiprocessing import Process, Queue from collections import Counter def count_words_in_segment(start_pos, length, queue): """Count words in a segment of the file and put results in queue""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to segment start f.seek(start_pos) # If not at start of file, read and discard partial first word if start_pos != 0: f.readline() # Read segment content = f.read(length) # Read to end of last word if not at EOF if start_pos + length < os.path.getsize('/tmp/file.txt'): content += f.readline() # Count words words = content.split() word_counts.update(words) # Put results in queue queue.put(dict(word_counts)) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment size (rounded down) segment_size = file_size // 4 # Create queue for results queue = Queue() # Create processes processes = [] for i in range(4): start = i * segment_size # For last segment, read until end of file length = segment_size if i < 3 else (file_size - start) p = Process(target=count_words_in_segment, args=(start, length, queue)) processes.append(p) p.start() # Get results from queue results = [] for _ in range(4): results.append(queue.get()) # Wait for all processes to complete for p in processes: p.join() # Print results for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that counts word frequencies in parallel across 4 cores, processing different sections of the input file:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager import os from collections import Counter def count_words_in_chunk(start_pos, chunk_size, filename, return_dict, worker_id): """Count words in a specific chunk of the file""" word_counts = Counter() with open(filename, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if start_pos + chunk_size < os.path.getsize(filename): content += f.readline() # Split into words and count words = content.split() word_counts.update(words) # Store result in shared dictionary return_dict[worker_id] = dict(word_counts) def main(): filename = '/tmp/file.txt' file_size = os.path.getsize(filename) chunk_size = file_size // 4 # Create a manager for sharing data between processes with Manager() as manager: return_dict = manager.dict() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, filename, return_dict, i)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each worker for i in range(4): print(json.dumps(return_dict[i])) if __name__ == '__main__': main() |
1 2 3 4 | {"word1": 5, "word2": 3} {"word2": 2, "word3": 4} {"word1": 1, "word4": 2} {"word5": 3, "word2": 1} |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager import os from collections import Counter def count_words_in_chunk(start_pos, chunk_size, filename, return_dict, worker_id): """Count words in a specific chunk of the file""" word_counts = Counter() with open(filename, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if start_pos + chunk_size < os.path.getsize(filename): content += f.readline() # Split into words and count words = content.split() word_counts.update(words) # Store result in shared dictionary return_dict[worker_id] = dict(word_counts) def main(): filename = '/tmp/file.txt' file_size = os.path.getsize(filename) chunk_size = file_size // 4 # Create a manager for sharing data between processes with Manager() as manager: return_dict = manager.dict() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, filename, return_dict, i)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each worker for i in range(4): print(json.dumps(return_dict[i])) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json from multiprocessing import Process, Manager import os from collections import Counter def count_words_in_chunk(start_pos, chunk_size, filename, return_dict, worker_id): """Count words in a specific chunk of the file""" word_counts = Counter() with open(filename, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if start_pos + chunk_size < os.path.getsize(filename): content += f.readline() # Split into words and count words = content.split() word_counts.update(words) # Store result in shared dictionary return_dict[worker_id] = dict(word_counts) def main(): filename = '/tmp/file.txt' file_size = os.path.getsize(filename) chunk_size = file_size // 4 # Create a manager for sharing data between processes with Manager() as manager: return_dict = manager.dict() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, filename, return_dict, i)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each worker for i in range(4): print(json.dumps(return_dict[i])) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager import os from collections import Counter def count_words_in_chunk(start_pos, chunk_size, filename, return_dict, worker_id): """Count words in a specific chunk of the file""" word_counts = Counter() with open(filename, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if start_pos + chunk_size < os.path.getsize(filename): content += f.readline() # Split into words and count words = content.split() word_counts.update(words) # Store result in shared dictionary return_dict[worker_id] = dict(word_counts) def main(): filename = '/tmp/file.txt' file_size = os.path.getsize(filename) chunk_size = file_size // 4 # Create a manager for sharing data between processes with Manager() as manager: return_dict = manager.dict() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, filename, return_dict, i)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each worker for i in range(4): print(json.dumps(return_dict[i])) if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that processes a text file in parallel and outputs word counts as JSON for each segment:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_segment(start_pos, end_pos): """Count words in a specific segment of the file""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to start position f.seek(start_pos) # If we're not at the start of the file, discard partial word if start_pos != 0: f.readline() # Read and count until end position while f.tell() < end_pos: line = f.readline() if not line: break words = line.strip().split() word_counts.update(words) return dict(word_counts) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment sizes num_processes = 4 segment_size = file_size // num_processes # Create segments segments = [] for i in range(num_processes): start = i * segment_size end = start + segment_size if i < num_processes - 1 else file_size segments.append((start, end)) # Create pool and process segments with mp.Pool(processes=num_processes) as pool: results = pool.starmap(count_words_in_segment, [(start, end) for start, end in segments]) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
1 2 3 4 | {"This": 1, "is": 1} {"is": 1, "is,": 1} {"an": 1} {"example": 1} |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_segment(start_pos, end_pos): """Count words in a specific segment of the file""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to start position f.seek(start_pos) # If we're not at the start of the file, discard partial word if start_pos != 0: f.readline() # Read and count until end position while f.tell() < end_pos: line = f.readline() if not line: break words = line.strip().split() word_counts.update(words) return dict(word_counts) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment sizes num_processes = 4 segment_size = file_size // num_processes # Create segments segments = [] for i in range(num_processes): start = i * segment_size end = start + segment_size if i < num_processes - 1 else file_size segments.append((start, end)) # Create pool and process segments with mp.Pool(processes=num_processes) as pool: results = pool.starmap(count_words_in_segment, [(start, end) for start, end in segments]) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_segment(start_pos, end_pos): """Count words in a specific segment of the file""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to start position f.seek(start_pos) # If we're not at the start of the file, discard partial word if start_pos != 0: f.readline() # Read and count until end position while f.tell() < end_pos: line = f.readline() if not line: break words = line.strip().split() word_counts.update(words) return dict(word_counts) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment sizes num_processes = 4 segment_size = file_size // num_processes # Create segments segments = [] for i in range(num_processes): start = i * segment_size end = start + segment_size if i < num_processes - 1 else file_size segments.append((start, end)) # Create pool and process segments with mp.Pool(processes=num_processes) as pool: results = pool.starmap(count_words_in_segment, [(start, end) for start, end in segments]) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #!/usr/bin/env python3 import json import multiprocessing as mp from collections import Counter import os def count_words_in_segment(start_pos, end_pos): """Count words in a specific segment of the file""" word_counts = Counter() with open('/tmp/file.txt', 'r') as f: # Seek to start position f.seek(start_pos) # If we're not at the start of the file, discard partial word if start_pos != 0: f.readline() # Read and count until end position while f.tell() < end_pos: line = f.readline() if not line: break words = line.strip().split() word_counts.update(words) return dict(word_counts) def main(): # Get file size file_size = os.path.getsize('/tmp/file.txt') # Calculate segment sizes num_processes = 4 segment_size = file_size // num_processes # Create segments segments = [] for i in range(num_processes): start = i * segment_size end = start + segment_size if i < num_processes - 1 else file_size segments.append((start, end)) # Create pool and process segments with mp.Pool(processes=num_processes) as pool: results = pool.starmap(count_words_in_segment, [(start, end) for start, end in segments]) # Print results, one JSON dictionary per line for result in results: print(json.dumps(result)) if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True
I have setup the docker container to run the model evaluation.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Write a self-contained Python program that prints a JSON output of how often each word appears in a text file located in /tmp/file.txt. So if the file contains "This is is is, an example" then the program should print to stdout. {"This": 1, "is": 2, "is,":1, "an":1, "example":1} The program should be run by calling /path/to/python_word_count with no arguments. Make it run in parallel on 4 cores at the same time, each taking 1/4 of the file. Print out 4 differnt json dicts, one per line. I'll do the merging.
Here's a Python program that counts word frequencies in parallel across 4 cores:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager from collections import Counter import os def count_words_in_chunk(start_pos, chunk_size, result_list, file_path): word_counts = Counter() with open(file_path, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if f.tell() < os.path.getsize(file_path): content += f.readline() # Count words in this chunk words = content.split() word_counts.update(words) # Add result to shared list result_list.append(dict(word_counts)) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) chunk_size = file_size // 4 # Create a manager to share results between processes with Manager() as manager: result_list = manager.list() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, result_list, file_path)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each process for count_dict in result_list: print(json.dumps(count_dict)) if __name__ == '__main__': main() |
1 2 3 4 | {"word1": 5, "word2": 3, ...} {"word3": 2, "word4": 7, ...} {"word5": 4, "word6": 1, ...} {"word7": 6, "word8": 2, ...} |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager from collections import Counter import os def count_words_in_chunk(start_pos, chunk_size, result_list, file_path): word_counts = Counter() with open(file_path, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if f.tell() < os.path.getsize(file_path): content += f.readline() # Count words in this chunk words = content.split() word_counts.update(words) # Add result to shared list result_list.append(dict(word_counts)) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) chunk_size = file_size // 4 # Create a manager to share results between processes with Manager() as manager: result_list = manager.list() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, result_list, file_path)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each process for count_dict in result_list: print(json.dumps(count_dict)) if __name__ == '__main__': main() |
Below is some student's code. I asked them to parallelize some code. Do not judge if it is correct, I have test cases for that. Just tell me if they tried to parallelize it. #!/usr/bin/env python3 import json from multiprocessing import Process, Manager from collections import Counter import os def count_words_in_chunk(start_pos, chunk_size, result_list, file_path): word_counts = Counter() with open(file_path, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if f.tell() < os.path.getsize(file_path): content += f.readline() # Count words in this chunk words = content.split() word_counts.update(words) # Add result to shared list result_list.append(dict(word_counts)) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) chunk_size = file_size // 4 # Create a manager to share results between processes with Manager() as manager: result_list = manager.list() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, result_list, file_path)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each process for count_dict in result_list: print(json.dumps(count_dict)) if __name__ == '__main__': main() Answer either 'The student passes' or 'The student fails'.
The student passes.
Testing if the previous output contains the string student passes
: True
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #!/usr/bin/env python3 import json from multiprocessing import Process, Manager from collections import Counter import os def count_words_in_chunk(start_pos, chunk_size, result_list, file_path): word_counts = Counter() with open(file_path, 'r') as f: # Seek to the start position f.seek(start_pos) # If this isn't the first chunk, read and discard partial word if start_pos != 0: f.readline() # Read chunk_size bytes content = f.read(chunk_size) # If this isn't the last chunk, read until end of last word if f.tell() < os.path.getsize(file_path): content += f.readline() # Count words in this chunk words = content.split() word_counts.update(words) # Add result to shared list result_list.append(dict(word_counts)) def main(): file_path = '/tmp/file.txt' file_size = os.path.getsize(file_path) chunk_size = file_size // 4 # Create a manager to share results between processes with Manager() as manager: result_list = manager.list() processes = [] # Create and start 4 processes for i in range(4): start_pos = i * chunk_size # For the last chunk, make sure we read until the end if i == 3: chunk_size = file_size - start_pos p = Process(target=count_words_in_chunk, args=(start_pos, chunk_size, result_list, file_path)) processes.append(p) p.start() # Wait for all processes to complete for p in processes: p.join() # Print results for each process for count_dict in result_list: print(json.dumps(count_dict)) if __name__ == '__main__': main() |
{"it": 10, "was": 10, "the": 11, "best": 1, "of": 10, "times,": 2, "worst": 1, "age": 2, "wisdom,": 1, "foolishness,": 1, "epoch": 2, "belief,": 1, "incredulity,": 1, "season": 2, "Light,": 1, "Darkness,": 1, "spring": 1, "hope,": 1, "winter": 1, "despair,": 1, "we": 4, "had": 2, "everything": 1, "before": 2, "us,": 2, "nothing": 1, "were": 2, "all": 2, "going": 2, "direct": 2, "to": 1, "Heaven,": 1, "other": 1, "way": 1}
{}
{}
{}
Resulting in output: {'it': 10, 'was': 10, 'the': 11, 'best': 1, 'of': 10, 'times,': 2, 'worst': 1, 'age': 2, 'wisdom,': 1, 'foolishness,': 1, 'epoch': 2, 'belief,': 1, 'incredulity,': 1, 'season': 2, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'we': 4, 'had': 2, 'everything': 1, 'before': 2, 'us,': 2, 'nothing': 1, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
Testing if the previous output equals the string {'the': 11, 'it': 10, 'was': 10, 'of': 10, 'we': 4, 'times,': 2, 'age': 2, 'epoch': 2, 'season': 2, 'had': 2, 'before': 2, 'us,': 2, 'were': 2, 'all': 2, 'going': 2, 'direct': 2, 'best': 1, 'worst': 1, 'wisdom,': 1, 'foolishness,': 1, 'belief,': 1, 'incredulity,': 1, 'Light,': 1, 'Darkness,': 1, 'spring': 1, 'hope,': 1, 'winter': 1, 'despair,': 1, 'everything': 1, 'nothing': 1, 'to': 1, 'Heaven,': 1, 'other': 1, 'way': 1}
: True