Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
1 2 3 4 5 6 7 8 9 10 11 12 13 | SET R1 1 ; Initialize counter for squares SET R2 1 ; Initialize counter for loop SET R3 1 ; Initialize first square value loop: MUL R3 R1 R1 ; Calculate square (R1 * R1) STORE R3 R2 ; Store the square in memory INC R1 ; Increment counter for squares INC R2 ; Increment counter for loop LT R2 21 ; Check if we've calculated 20 squares JT loop ; If not, jump back to loop HCF ; Stop the program |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 | SET R1 1 ; Initialize counter for squares SET R2 1 ; Initialize counter for loop SET R3 1 ; Initialize first square value loop: MUL R3 R1 R1 ; Calculate square (R1 * R1) STORE R3 R2 ; Store the square in memory INC R1 ; Increment counter for squares INC R2 ; Increment counter for loop LT R2 21 ; Check if we've calculated 20 squares JT loop ; If not, jump back to loop HCF ; Stop the program |
Resulting in output: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | SET R1 1 ; Initialize counter (n) to 1 SET R2 1 ; Initialize memory index (i) to 0 loop: MUL R3 R1 R1 ; Calculate n * n STORE R3 R2 ; Store the square at memory location i INC R1 ; Increment counter n INC R2 ; Increment memory index i EQ R1 21 ; Check if n > 20 JF loop ; If not, continue the loop HCF ; Stop the program |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | SET R1 1 ; Initialize counter (n) to 1 SET R2 1 ; Initialize memory index (i) to 0 loop: MUL R3 R1 R1 ; Calculate n * n STORE R3 R2 ; Store the square at memory location i INC R1 ; Increment counter n INC R2 ; Increment memory index i EQ R1 21 ; Check if n > 20 JF loop ; If not, continue the loop HCF ; Stop the program |
Resulting in output: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
1 2 3 4 5 6 7 8 9 10 11 12 13 | SET R1 1 ; Initialize counter for the number we are squaring SET R2 0 ; Initialize counter for memory addresses SET R3 1 ; Constant value 1 loop: MUL R4 R1 R1 ; Calculate the square (R1 * R1) STORE R4 R2 ; Store the square at the current memory address INC R1 ; Move to the next number INC R2 ; Move to the next memory address LT R1 21 ; Check if we have calculated 20 squares JT loop ; If not, continue the loop HCF ; End the program |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 | SET R1 1 ; Initialize counter for the number we are squaring SET R2 0 ; Initialize counter for memory addresses SET R3 1 ; Constant value 1 loop: MUL R4 R1 R1 ; Calculate the square (R1 * R1) STORE R4 R2 ; Store the square at the current memory address INC R1 ; Move to the next number INC R2 ; Move to the next memory address LT R1 21 ; Check if we have calculated 20 squares JT loop ; If not, continue the loop HCF ; End the program |
Resulting in output: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | SET R1 1 ; Initialize counter i to 1 SET R2 0 ; Initialize memory index j to 0 loop: MUL R3 R1 R1 ; Calculate i * i STORE R3 R2 ; Store the square in memory[j] INC R1 ; Increment i INC R2 ; Increment j EQ R1 21 ; Check if i > 20 JF loop ; If not, continue loop HCF ; Stop the program |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | SET R1 1 ; Initialize counter i to 1 SET R2 0 ; Initialize memory index j to 0 loop: MUL R3 R1 R1 ; Calculate i * i STORE R3 R2 ; Store the square in memory[j] INC R1 ; Increment i INC R2 ; Increment j EQ R1 21 ; Check if i > 20 JF loop ; If not, continue loop HCF ; Stop the program |
Resulting in output: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 square (1, 4, 9...) numbers in memory cells 0..19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | SET R1 1 ; Initialize counter for numbers 1 to 20 SET R2 1 ; Initialize counter for squares SET R3 0 ; Initialize memory index loop: MUL R4 R1 R1 ; Calculate square (R1 * R1) STORE R4 R3 ; Store the square in memory INC R1 ; Increment number counter INC R3 ; Increment memory index EQ R1 21 ; Check if we've calculated 20 squares JT end ; If yes, jump to end JMP loop ; Otherwise, continue looping end: HCF ; End the program |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | SET R1 1 ; Initialize counter for numbers 1 to 20 SET R2 1 ; Initialize counter for squares SET R3 0 ; Initialize memory index loop: MUL R4 R1 R1 ; Calculate square (R1 * R1) STORE R4 R3 ; Store the square in memory INC R1 ; Increment number counter INC R3 ; Increment memory index EQ R1 21 ; Check if we've calculated 20 squares JT end ; If yes, jump to end JMP loop ; Otherwise, continue looping end: HCF ; End the program |
Resulting in output: True