Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
SET R1 1
SET R2 2
STORE R2 0
JMP L2

L1:
  INC R1
  ADD R3 R2 R1
  EQ R4 R3 R1
  JT L3
  ADD R2 R2 R1
  JMP L1

L2:
  SET R1 1
  INC R1
  LT R3 R1 20
  JT L1

HCF

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
SET R1 1
SET R2 2
STORE R2 0
JMP L2

L1:
  INC R1
  ADD R3 R2 R1
  EQ R4 R3 R1
  JT L3
  ADD R2 R2 R1
  JMP L1

L2:
  SET R1 1
  INC R1
  LT R3 R1 20
  JT L1

HCF

PyFunc

Infinite loop detected Resulting in output: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
SET R1 2
SET R2 0
LOOP:
  SET R3 0
  SET R4 2
  CHECK:
    EQ R4 R1
    JT END
    MOD R1 R4
    EQ R5 0
    JT PRIME
    ADD R4 1
    JMP CHECK
PRIME:
  ADD R2 1
  STORE R1 R2
  ADD R1 1
  JMP LOOP
END:
HCF

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
SET R1 2
SET R2 0
LOOP:
  SET R3 0
  SET R4 2
  CHECK:
    EQ R4 R1
    JT END
    MOD R1 R4
    EQ R5 0
    JT PRIME
    ADD R4 1
    JMP CHECK
PRIME:
  ADD R2 1
  STORE R1 R2
  ADD R1 1
  JMP LOOP
END:
HCF

PyFunc

Resulting in output: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
main:
  # set i to 2
  set r1 2
  # set count to 0
  set r2 0
loop:
  # check if i is prime
  set r3 0
  set r4 2
  while:
    # if i is divisible by j
    div r1 r4 r5
    eq r5 0
    jt prime
    # increment j
    inc r4
    # loop back to while
    jmp while
  prime:
    # store i in memory
    store r1 r2
    # increment count
    inc r2
    # check if count is 20
    eq r2 20
    jt end
    # increment i
    inc r1
    # loop back to loop
    jmp loop
end:
  hcf

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
main:
  # set i to 2
  set r1 2
  # set count to 0
  set r2 0
loop:
  # check if i is prime
  set r3 0
  set r4 2
  while:
    # if i is divisible by j
    div r1 r4 r5
    eq r5 0
    jt prime
    # increment j
    inc r4
    # loop back to while
    jmp while
  prime:
    # store i in memory
    store r1 r2
    # increment count
    inc r2
    # check if count is 20
    eq r2 20
    jt end
    # increment i
    inc r1
    # loop back to loop
    jmp loop
end:
  hcf

PyFunc

Resulting in output: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
; Find and store the first 20 prime numbers in memory

; Set up registers
SET R2 2

; Main loop
LOOP:
    ; Check if R2 is prime
    SET R3 2
    PRIME:
        ; Check if R2 is divisible by R3
        MOD R2 R3 R5
        EQ R5 0 JT NOT_PRIME
        ; Increment R3
        INC R3
        JMP PRIME
    ; If R2 is prime, store it in memory
    NOT_PRIME:
        STORE R2 M
        ; Increment memory address
        INC M
        ; Increment R2
        INC R2
    ; Repeat until R2 is greater than 20
    LT R2 20 JT LOOP

; Halt
HCF

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
; Find and store the first 20 prime numbers in memory

; Set up registers
SET R2 2

; Main loop
LOOP:
    ; Check if R2 is prime
    SET R3 2
    PRIME:
        ; Check if R2 is divisible by R3
        MOD R2 R3 R5
        EQ R5 0 JT NOT_PRIME
        ; Increment R3
        INC R3
        JMP PRIME
    ; If R2 is prime, store it in memory
    NOT_PRIME:
        STORE R2 M
        ; Increment memory address
        INC M
        ; Increment R2
        INC R2
    ; Repeat until R2 is greater than 20
    LT R2 20 JT LOOP

; Halt
HCF

PyFunc

integer division or modulo by zero Resulting in output: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) Given this assembly language, write a program that puts the first 20 prime numbers in memory cells 0..19

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
START:
    SET R1 2
    SET R2 1
    SET R3 0
    SET R4 0
    SET R5 0
    SET R6 0
    SET R7 0
    SET R8 0

LOOP1:
    INC R1
    SET R2 2
    SET R3 0

LOOP2:
    EQ R2 R1
    JT ENDLOOP2
    MOD R1 R2
    EQ R4 0
    JT ENDLOOP2
    INC R2
    JMP LOOP2

ENDLOOP2:
    EQ R3 0
    JF FOUNDPRIME
    SET R6 R1
    STORE R6 R5
    INC R5
    INC R7

FOUNDPRIME:
    INC R3
    EQ R3 20
    JT ENDLOOP1
    JMP LOOP1

ENDLOOP1:
    HCF

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
START:
    SET R1 2
    SET R2 1
    SET R3 0
    SET R4 0
    SET R5 0
    SET R6 0
    SET R7 0
    SET R8 0

LOOP1:
    INC R1
    SET R2 2
    SET R3 0

LOOP2:
    EQ R2 R1
    JT ENDLOOP2
    MOD R1 R2
    EQ R4 0
    JT ENDLOOP2
    INC R2
    JMP LOOP2

ENDLOOP2:
    EQ R3 0
    JF FOUNDPRIME
    SET R6 R1
    STORE R6 R5
    INC R5
    INC R7

FOUNDPRIME:
    INC R3
    EQ R3 20
    JT ENDLOOP1
    JMP LOOP1

ENDLOOP1:
    HCF

PyFunc

list index out of range Resulting in output: False