I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
You can achieve the same functionality using numpy's fancy indexing. Here is the vectorized version of the code:
1 2 | frame = image[rows[:, None, None], cols[:, None], ch] out.write(frame) |
Testing if the previous output contains the string ix_
: False
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The function you are looking for is `numpy.take`. This function takes elements from an input array along the given axis at specified indices and stores them in an output array. Here's how you can use `numpy.take` to vectorize your code:
1 2 3 4 | frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) indices = (rows[:, np.newaxis], cols, ch) frame = np.take(image, indices, axis=(0, 1, 2)) out.write(frame) |
Testing if the previous output contains the string ix_
: False
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
You can achieve this functionality using the `np.meshgrid` function in NumPy. Here is an example of how you can vectorize the code using `np.meshgrid`:
1 2 3 | rows, cols, ch = np.meshgrid(rows, cols, ch, indexing='ij') frame = image[rows, cols, ch] out.write(frame) |
Testing if the previous output contains the string ix_
: False
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
You can achieve the same result using numpy's built-in indexing capabilities. One way to vectorize this function is to use advanced indexing with numpy arrays. Here is an example of how you can do this:
1 2 | frame = image[rows[:, None], cols, ch] out.write(frame) |
Testing if the previous output contains the string ix_
: False
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The function you are looking for is `np.meshgrid()`. Here is an example of how you can use `np.meshgrid()` to vectorize the code snippet you provided:
1 2 3 | rows, cols, ch = np.meshgrid(rows, cols, ch, indexing='ij') frame = image[rows, cols, ch] out.write(frame) |
Testing if the previous output contains the string ix_
: False