I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The process you're describing is often referred to as "array indexing" or "advanced indexing" in NumPy. The specific operation you're trying to perform is a form of resampling or remapping an image. A vectorized version of this operation can be achieved using NumPy's advanced indexing capabilities. The function you're looking for is likely `np.ix_()` combined with array indexing. Here's how you could vectorize this operation:
1 2 3 4 5 6 7 8 9 | import numpy as np # Assuming 'rows', 'cols', and 'ch' are your index arrays indices = np.ix_(rows, cols, ch) # This creates a new array by indexing 'image' with 'indices' frame = image[indices] out.write(frame) |
Testing if the previous output contains the string ix_
: True
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The process you're describing is often referred to as "array indexing" or "fancy indexing" in NumPy. The specific operation you're looking to perform can be achieved using NumPy's advanced indexing capabilities. Here's how you can vectorize this operation:
1 2 | frame = image[rows[:, None, None], cols[None, :, None], ch[None, None, :]] out.write(frame) |
Testing if the previous output contains the string ix_
: False
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The operation you're describing is often referred to as "array indexing" or "fancy indexing" in NumPy. The specific function that can help you vectorize this operation is `np.ix_()`. Here's how you can vectorize your code using NumPy:
1 2 | frame = image[np.ix_(rows, cols, ch)] out.write(frame) |
Testing if the previous output contains the string ix_
: True
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The operation you're describing is often referred to as "array indexing" or "fancy indexing" in NumPy. The specific NumPy function that can replace your nested loops is `np.ix_()`. Here's how you can vectorize your code using NumPy:
1 2 | frame = image[np.ix_(rows, cols, ch)] out.write(frame) |
Testing if the previous output contains the string ix_
: True
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
I want to vectorize a function frame = np.zeros((out_h, out_w, 3), dtype=np.uint8) for i, val1 in enumerate(rows): for j, val2 in enumerate(cols): for j, val3 in enumerate(ch): # Assuming you want to store the pair as tuples in the matrix frame[i, j, k] = image[val1, val2, val3] out.write(np.array(frame)) with a simple numpy function that does something like this what is it called
The operation you're describing is often referred to as "array indexing" or "fancy indexing" in NumPy. The specific operation you want to perform can be achieved using NumPy's advanced indexing capabilities. Here's how you can vectorize this operation:
1 2 | frame = image[rows[:, None, None], cols[None, :, None], ch[None, None, :]] out.write(frame) |
Testing if the previous output contains the string ix_
: False