Initial Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

LLM Generation

Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numba
import numpy as np

@numba.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numba
import numpy as np

@numba.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numba
import numpy as np

@numba.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = rref(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Traceback (most recent call last):
  File "/usr/src/app/main.py", line 61, in <module>
    answer = rref(arr, 37)
             ^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 468, in _compile_for_args
    error_rewrite(e, 'typing')
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 409, in error_rewrite
    raise e.with_traceback(None)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
No implementation of function Function(<built-in function array>) found for signature:</p>
<blockquote>
<blockquote>
<blockquote>
<p>array(array(int64, 2d, C))</p>
</blockquote>
</blockquote>
</blockquote>
<p>There are 2 candidate implementations:
    - Of which 2 did not match due to:
    Overload in function 'impl_np_array': File: numba/np/arrayobj.py: Line 5421.
      With argument(s): '(array(int64, 2d, C))':
     Rejected as the implementation raised a specific error:
       TypingError: Failed in nopython mode pipeline (step: nopython frontend)
     No implementation of function Function(<intrinsic np_array>) found for signature:</p>
<pre><code>  >>> np_array(array(int64, 2d, C), none)

 There are 2 candidate implementations:
       - Of which 2 did not match due to:
       Intrinsic in function 'np_array': File: numba/np/arrayobj.py: Line 5395.
         With argument(s): '(array(int64, 2d, C), none)':
        Rejected as the implementation raised a specific error:
          TypingError: array(int64, 2d, C) not allowed in a homogeneous sequence
   raised from /usr/local/lib/python3.11/dist-packages/numba/core/typing/npydecl.py:482

 During: resolving callee type: Function(<intrinsic np_array>)
 During: typing of call at /usr/local/lib/python3.11/dist-packages/numba/np/arrayobj.py (5432)


 File "../../local/lib/python3.11/dist-packages/numba/np/arrayobj.py", line 5432:
     def impl(object, dtype=None):
         return np_array(object, dtype)
         ^
</code></pre>
<p>raised from /usr/local/lib/python3.11/dist-packages/numba/core/typeinfer.py:1091
During: resolving callee type: Function(<built-in function array>)
During: typing of call at /usr/src/app/main.py (54)
File "main.py", line 54:
def rref(matrix, graphlen):
    <source elided></p>
<pre><code>matrix = np.array(matrix)%PH
^
</code></pre>
<p>

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: False

Substring Evaluation

Testing if the previous output contains the string nopython: True

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: True

Substring Evaluation

Testing if the previous output contains the string from numba: False

Final Answer: True

Final Answer: False

Initial Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

LLM Generation

Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

Output

Here is the function `rref` rewritten using numba and nopython mode:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
from numba import njit

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
from numba import njit

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
from numba import njit

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = rref(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/usr/local/lib/python3.11/dist-packages/numba/core/decorators.py:250: RuntimeWarning: nopython is set for njit and is ignored
  warnings.warn('nopython is set for njit and is ignored', RuntimeWarning)
Traceback (most recent call last):
  File "/usr/src/app/main.py", line 61, in <module>
    answer = rref(arr, 37)
             ^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 468, in _compile_for_args
    error_rewrite(e, 'typing')
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 409, in error_rewrite
    raise e.with_traceback(None)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
No implementation of function Function(<built-in function array>) found for signature:</p>
<blockquote>
<blockquote>
<blockquote>
<p>array(array(int64, 2d, C))</p>
</blockquote>
</blockquote>
</blockquote>
<p>There are 2 candidate implementations:
    - Of which 2 did not match due to:
    Overload in function 'impl_np_array': File: numba/np/arrayobj.py: Line 5421.
      With argument(s): '(array(int64, 2d, C))':
     Rejected as the implementation raised a specific error:
       TypingError: Failed in nopython mode pipeline (step: nopython frontend)
     No implementation of function Function(<intrinsic np_array>) found for signature:</p>
<pre><code>  >>> np_array(array(int64, 2d, C), none)

 There are 2 candidate implementations:
       - Of which 2 did not match due to:
       Intrinsic in function 'np_array': File: numba/np/arrayobj.py: Line 5395.
         With argument(s): '(array(int64, 2d, C), none)':
        Rejected as the implementation raised a specific error:
          TypingError: array(int64, 2d, C) not allowed in a homogeneous sequence
   raised from /usr/local/lib/python3.11/dist-packages/numba/core/typing/npydecl.py:482

 During: resolving callee type: Function(<intrinsic np_array>)
 During: typing of call at /usr/local/lib/python3.11/dist-packages/numba/np/arrayobj.py (5432)


 File "../../local/lib/python3.11/dist-packages/numba/np/arrayobj.py", line 5432:
     def impl(object, dtype=None):
         return np_array(object, dtype)
         ^
</code></pre>
<p>raised from /usr/local/lib/python3.11/dist-packages/numba/core/typeinfer.py:1091
During: resolving callee type: Function(<built-in function array>)
During: typing of call at /usr/src/app/main.py (54)
File "main.py", line 54:
def rref(matrix, graphlen):
    <source elided></p>
<pre><code>matrix = np.array(matrix)%PH
^
</code></pre>
<p>

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: True

Substring Evaluation

Testing if the previous output contains the string nopython: True

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: False

Substring Evaluation

Testing if the previous output contains the string from numba: True

Final Answer: True

Final Answer: False

Initial Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

LLM Generation

Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
from numba import njit, prange

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]

    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH

        col += 1

    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
from numba import njit, prange

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]

    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH

        col += 1

    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
from numba import njit, prange

@njit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]

    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH

        col += 1

    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = rref(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/usr/local/lib/python3.11/dist-packages/numba/core/decorators.py:250: RuntimeWarning: nopython is set for njit and is ignored
  warnings.warn('nopython is set for njit and is ignored', RuntimeWarning)
Traceback (most recent call last):
  File "/usr/src/app/main.py", line 60, in <module>
    answer = rref(arr, 37)
             ^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 468, in _compile_for_args
    error_rewrite(e, 'typing')
  File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 409, in error_rewrite
    raise e.with_traceback(None)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
No implementation of function Function(<built-in function array>) found for signature:</p>
<blockquote>
<blockquote>
<blockquote>
<p>array(array(int64, 2d, C))</p>
</blockquote>
</blockquote>
</blockquote>
<p>There are 2 candidate implementations:
    - Of which 2 did not match due to:
    Overload in function 'impl_np_array': File: numba/np/arrayobj.py: Line 5421.
      With argument(s): '(array(int64, 2d, C))':
     Rejected as the implementation raised a specific error:
       TypingError: Failed in nopython mode pipeline (step: nopython frontend)
     No implementation of function Function(<intrinsic np_array>) found for signature:</p>
<pre><code>  >>> np_array(array(int64, 2d, C), none)

 There are 2 candidate implementations:
       - Of which 2 did not match due to:
       Intrinsic in function 'np_array': File: numba/np/arrayobj.py: Line 5395.
         With argument(s): '(array(int64, 2d, C), none)':
        Rejected as the implementation raised a specific error:
          TypingError: array(int64, 2d, C) not allowed in a homogeneous sequence
   raised from /usr/local/lib/python3.11/dist-packages/numba/core/typing/npydecl.py:482

 During: resolving callee type: Function(<intrinsic np_array>)
 During: typing of call at /usr/local/lib/python3.11/dist-packages/numba/np/arrayobj.py (5432)


 File "../../local/lib/python3.11/dist-packages/numba/np/arrayobj.py", line 5432:
     def impl(object, dtype=None):
         return np_array(object, dtype)
         ^
</code></pre>
<p>raised from /usr/local/lib/python3.11/dist-packages/numba/core/typeinfer.py:1091
During: resolving callee type: Function(<built-in function array>)
During: typing of call at /usr/src/app/main.py (53)
File "main.py", line 53:
def rref(matrix, graphlen):
    <source elided>
    matrix = np.array(matrix)%PH
    ^

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: True

Substring Evaluation

Testing if the previous output contains the string nopython: True

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: False

Substring Evaluation

Testing if the previous output contains the string from numba: True

Final Answer: True

Final Answer: False

Initial Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

LLM Generation

Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numba as nb

@nb.njit(fastmath=True, parallel=False, cache=True, nogil=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numba as nb

@nb.njit(fastmath=True, parallel=False, cache=True, nogil=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numba as nb

@nb.njit(fastmath=True, parallel=False, cache=True, nogil=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = rref(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 58, in <module> arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) ^^ NameError: name 'np' is not defined. Did you mean: 'nb'?

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: True

Substring Evaluation

Testing if the previous output contains the string nopython: False

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: True

Substring Evaluation

Testing if the previous output contains the string from numba: False

Final Answer: True

Final Answer: False

Initial Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

LLM Generation

Query

Rewrite this function to use numba and nopython mode. You can assume that the input is a 2d matrix correctly formatted. Call it rref still. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numba as nb
from numba import prange

@nb.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numba as nb
from numba import prange

@nb.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numba as nb
from numba import prange

@nb.jit(nopython=True)
def rref(matrix, graphlen):
    PH = 16

    extra = 0
    col = 0
    pivots = []

    used_for_row = [set([i]) for i in range(matrix.shape[0])]
    
    matrix = matrix%PH
    while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]:

        if matrix[col,col+extra] == 0:
            if np.all(matrix[:,col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue

            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]

        pivots.append(col+extra)
        pivot = matrix[col,col+extra]
        if col+extra < graphlen:
            assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1
        else:
            assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2
            pivot //= 2
        matrix[col] *= pivot
        matrix[col] %= PH

        others = np.argwhere(matrix[:,col+extra]).flatten()

        for i in others:
            if i == col: continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col]*matrix[i,col+extra]
            else:
                while matrix[i,col+extra] != 0:
                    matrix[i] = (matrix[i]-matrix[col])%PH
            matrix[i] %= PH
                    
        col += 1
    
    matrix = np.array(matrix)%PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = rref(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 59, in <module> arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) ^^ NameError: name 'np' is not defined. Did you mean: 'nb'?

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: False

Substring Evaluation

Testing if the previous output contains the string nopython: True

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: True

Substring Evaluation

Testing if the previous output contains the string from numba: True

Final Answer: True

Final Answer: False